scholarly journals A Review of Southeast Asian Oil Palm and Its CO2 Fluxes

2020 ◽  
Vol 12 (12) ◽  
pp. 5077 ◽  
Author(s):  
Royston Uning ◽  
Mohd Talib Latif ◽  
Murnira Othman ◽  
Liew Juneng ◽  
Norfazrin Mohd Hanif ◽  
...  

Palm oil production is a key industry in tropical regions, driven by the demand for affordable vegetable oil. Palm oil production has been increasing by 9% every year, mostly due to expanding biofuel markets. However, the oil palm industry has been associated with key environmental issues, such as deforestation, peatland exploitation and biomass burning that release carbon dioxide (CO2) into the atmosphere, leading to climate change. This review therefore aims to discuss the characteristics of oil palm plantations and their impacts, especially CO2 emissions in the Southeast Asian region. The tropical climate and soil in Southeast Asian countries, such as Malaysia and Indonesia, are very suitable for growing oil palm trees. However, due to the scarcity of available plantation areas deforestation occurs, especially in peat swamp areas. Total carbon losses from both biomass and peat due to the conversion of tropical virgin peat swamp forest into oil palm plantations are estimated to be around 427.2 ± 90.7 t C ha−1 and 17.1 ± 3.6 t C ha−1 year−1, respectively. Even though measured CO2 fluxes have shown that overall, oil palm plantation CO2 emissions are about one to two times higher than other major crops, the ability of oil palms to absorb CO2 (a net of 64 tons of CO2 per hectare each year) and produce around 18 tons of oxygen per hectare per year is one of the main advantages of this crop. Since the oil palm industry plays a crucial role in the socio-economic development of Southeast Asian countries, sustainable and environmentally friendly practices would provide economic benefits while minimizing environmental impacts. A comprehensive review of all existing oil plantation procedures is needed to ensure that this high yielding crop has highly competitive environmental benefits.

2021 ◽  
Vol 13 (23) ◽  
pp. 12952
Author(s):  
Haitham Esam Rababah ◽  
Azhar Ghazali ◽  
Mohd Hafizal Mohd Isa

Fossil fuel consumption for electricity generation in the building sector is at an all-time high in line with the country’s economic growth. This scenario will increase the global CO2 emissions and large carbon footprints, thus leading to global warming. In recent years, most of the research related to the building sector has focused on the development of new techniques to reduce buildings’ energy consumption through energy conservation, energy efficiency, and the implementation of renewable energy technologies. The introduction of photovoltaic (PV) technology has become the most prominent renewable energy (RE) that can be integrated into building components. Even though the Building Integrated Photovoltaic (BIPV) has been available for decades, but its implementation in Southeast Asian countries has not gained widespread acceptance compared to European countries and other parts of Asia. This paper aims to investigate the effects and challenges of BIPV implementation in Southeast Asian Countries (Cambodia, Indonesia, Laos, Malaysia, Singapore, Thailand, Vietnam, and the Philippines), focusing on climate effects, the initial cost of PV technology, government policies, and initiatives. An in-depth literature review from past research, policies, and reports taken between 2016 to 2021 has been conducted and found that the environmental parameters directly influence the performance of BIPV systems and affect efficiency. This study pointed at Feed-in Tariff (FiT), policies and initiatives offered by the government in Southeast Asian countries are not beneficial and discourage building owners to adopt the BIPV technology or any other RE technology. Governments should revise the current policies to promote and attract more building owners to take part in the efforts to minimize CO2 emissions from the building industry.


2021 ◽  
Author(s):  
Jean Baptiste Aboyitungiye ◽  
Suryanto Suryanto ◽  
Evi Gravitiani

Abstract The recent climatic phenomena observed in developing countries since the 2000s have raised concerns, fears, and debates within the international community and economists. Human activities are largely responsible for atmospheric warming through their emissions of CO2 and polluting substances with dramatic consequences and numerous losses of human life in some countries. Using panel data covering the 2000-2016 period, this study investigated the social vulnerability due to the CO2 emissions through an empirical study of CO2’s determinants in selected countries of sub-Sahara African and Southeast Asian countries. The STIRPAT model gave out the result that; explanatories causes of carbon dioxide emissions are different in the two regions: the agriculture-forestry and fishing value-added, and human development index have a strong explanatory power on CO2 emissions in the ASEAN countries, the per-capita domestic product has a positive and significant influence on carbon emissions in the SSA countries, ceteris paribus, but was statistically insignificant in the ASEAN countries. The growing population decreases carbon emissions in the SSA selected countries while is not statically significant in the ASEAN countries. There is therefore a kind of double penalty: those who suffer, and will suffer the most from the impacts of climate change due to CO2 emissions, are those who contribute the least to the problem. These results provide insight into future strategies for the mitigation of climatic hazards already present in some places and potential for others which will be felt on different scales across the regions. Some of the inevitable redistributive effects of those risks can be corrected by providing financial support to the poorest populations hardest hit by natural disasters.


2016 ◽  
Vol 23 (2) ◽  
pp. 120-136
Author(s):  
NGUYEN THANH LIEM ◽  
TRAN HUNG SON ◽  
HOANG TRUNG NGHIA

Author(s):  
Dimas Satria ◽  
Poningsih Poningsih ◽  
Widodo Saputra

The purpose of this paper is to create an expert system to detect oil palm plant diseases in order to help farmers / companies in providing accurate information about the diseases of oil palm plants and how to overcome them and to help reduce the risk of decreasing palm oil production. This system is designed to mimic the expertise of an expert who is able to detect diseases that attack oil palm plants. The method used is forward chaining that is starting from a set of data and proving a fact by describing the level of confidence and uncertainty found in a hypothesis. The results of this study are to diagnose diseases of oil palm plants and their computerization using web programming languages.


2020 ◽  
Vol 24 (02) ◽  
pp. 1923-1929
Author(s):  
Nurhidayatuloh ◽  
Febrian ◽  
Mada Apriandi ◽  
Annalisa Y ◽  
Helena Primadianti Sulistyaningrum ◽  
...  

Author(s):  
E E Krasnozhenova ◽  
S V Kulik ◽  
T Chistalyova ◽  
K Yu Eidemiller ◽  
P L Karabushenko

Sign in / Sign up

Export Citation Format

Share Document