scholarly journals Recovery of Lithium from Simulated Secondary Resources (LiCO3) through Solvent Extraction

2020 ◽  
Vol 12 (17) ◽  
pp. 7179
Author(s):  
Pattamart Waengwan ◽  
Tippabust Eksangsri

Lithium extraction is currently too inefficient to be economical or marketable. The objective of this work was to find the best extractant and the most inexpensive approach to recover lithium chemically from lithium ion batteries containing other desired metals using the solvent extraction technique. The extraction efficiency of various extracting types was investigated. The highest extraction efficiency of lithium ion from aqueous solution was obtained with bis(2-ethylhexyl) phosphate (DEHPA), with 75% recovery. Studying the effects of selected extractants in this experiment, it was found that the acidic extractant group provided better extraction efficiency than solvating extractants. Further investigation of influential variables was carried out, including extraction time, pH of aqueous solution, and initial concentration. The results indicate that 6 h of extraction brings the system to equilibrium, and pH 1.5 is the best for extraction efficiency.

2011 ◽  
Vol 233-235 ◽  
pp. 1210-1213 ◽  
Author(s):  
Shu Yu Liu ◽  
Hao Lu ◽  
Li Jie Sun ◽  
Xin Guo

Solvent extraction technique was applied for the extraction of β-Sitosterol from jatropha seed oil.The optimum conditions for the lab scale extraction were obtained at 30ml solvent, 0.05g magnesium power, ratio of hydrochloric acid to zinc chloride of 1/1.75 (ml/g) and tetrahydrofuran as a solvent. Under the optical conditions, the yield of β-sitosterol was up to 3.27mg/g.


2013 ◽  
Vol 10 (3) ◽  
pp. 997-1004
Author(s):  
Baghdad Science Journal

Liquid-Liquid Extraction of Cu(II) ion in aqueous solution by dicyclohexyl-18-crown-6 as extractant in dichloroethane was studied .The extraction efficiency was investigated by a spectrophometric method. The reagent form a coloured complex which has been a quantitatively extracted at pH 6.3. The method obeys Beer`s law over range from (2.5-22.5) ppm with the correlation coefficient of 0.9989. The molar absorptivity the stoichiometry of extracted complex is found to be 1:2. the proposed method is very sensitive and selective.


Sign in / Sign up

Export Citation Format

Share Document