scholarly journals Solvent Extraction And Spectrophotomteric Determination Of Cu(Ii) With Dicyclohexyl - 18- Crown-6

2013 ◽  
Vol 10 (3) ◽  
pp. 997-1004
Author(s):  
Baghdad Science Journal

Liquid-Liquid Extraction of Cu(II) ion in aqueous solution by dicyclohexyl-18-crown-6 as extractant in dichloroethane was studied .The extraction efficiency was investigated by a spectrophometric method. The reagent form a coloured complex which has been a quantitatively extracted at pH 6.3. The method obeys Beer`s law over range from (2.5-22.5) ppm with the correlation coefficient of 0.9989. The molar absorptivity the stoichiometry of extracted complex is found to be 1:2. the proposed method is very sensitive and selective.


2016 ◽  
Vol 2016 ◽  
pp. 1-6 ◽  
Author(s):  
Quang Hieu Tran ◽  
Van Tan Le ◽  
Van Cuong Nguyen

A rapid, sensitive, and selective method for determination of thorium based on the complex withortho-ester tetra-azophenylcalix[4]arene (TEAC) was described. In the presence of pH of 4–6, TEAC-Th(IV) complex is extracted from an acidic aqueous solution into chloroform layer. The absorbance intensity of complex was measured by UV-Vis spectrometer at 525 nm and the molar absorptivity was found to be 2.4 × 104. Beer’s law was obeyed in the range of 1.0 to 25 × 10−5 M thorium(IV). The effects of pH, TEAC concentration, and shaking time were also studied. The tolerance limits for several metal ions were calculated. The proposed method was applied to the determination of thorium in synthetic solution and in the monazite sand samples with good results.



2015 ◽  
Vol 69 (4) ◽  
Author(s):  
Teodora S. Stefanova ◽  
Kiril K. Simitchiev ◽  
Kiril B. Gavazov

AbstractLiquid-liquid extraction (LLE) and cloud point extraction (CPE) of vanadium(V) ternary complexes with 4-(2-pyridylazo)resorcinol (PAR) and 2,3,5-triphenyl-2H-tetrazolum chloride (TTC) were investigated. The optimal conditions for vanadium extraction and spectrophotometric determination were identified. The composition (V : PAR : TTC) of the extracted species was 1 : 2 : 3 (optimal conditions; LLE), 2 : 2 : 2 (low reagents concentrations; LLE), 1 : 1 : 1 (short heating time; CPE), and 1 : 1 : 1 + 1 : 1 : 0 (optimal extraction conditions; CPE). LLE, performed in the presence of 1,2-diaminocyclohexane-N,N,N’,N’-tetraacetic acid and NH4F as masking agents, afforded the sensitive, selective, precise, and inexpensive spectrophotometric determination of vanadium. The absorption maximum, molar absorptivity, limit of detection, and linear working range were 559 nm, 1.95 × 105 dm3 mol−1 cm−1, 0.7 ng cm−3, and 2.2-510 ng cm−3, respectively. The procedure thus developed was applied to the analysis of drinking waters and steels. The relative standard deviations for V(V) determination were below 9.4 % (4-6 × 10−7 mass %; water samples) and 2.12 % (1-3 mass %; steel samples).



2020 ◽  
pp. 1-7
Author(s):  
Sue Chen ◽  
Qi An ◽  
Hong Sun ◽  
Mengqian Mao

Abstract A simple, inexpensive and sensitive method was developed for the simultaneous determination of three pesticide residues (carbendazim, thiophanate-methyl, and imidacloprid) in fruit and vegetable samples using high performance liquid chromatography (HPLC) based on a combined pretreatment of ultrasound-assisted deep eutectic solvent extraction (UA-DES-E) and liquid-liquid extraction (LLE). In this study, various types of deep eutectic solvents (DESs) were synthesized and the extraction efficiency was compared as extraction solvents. Results showed that glycerol-proline = 9:4 (GP-5) obtained the highest extraction efficiency among different types of DESs. Experiment conditions, including DES volume, extraction time and pH, were systematically optimized using single-factor experiment. Under the optimum conditions, the limits of detection (LODs) and quantification (LOQs) were in the ranges of 0.05–0.2 μg·mL−1 and 0.1–0.5 μg·mL−1, respectively. The relative recoveries of the three pesticides in the fruit and vegetable samples ranged from 85.7 to 113.0% at two spiked levels. Meanwhile, the method achieved excellent linearity with determination coefficients (r) greater than 0.999. Furthermore, the method was successfully applied to the analysis of the pesticides in real fruit and vegetable samples (apple, tomato, and grape).





1983 ◽  
Vol 15 (6-7) ◽  
pp. 149-159 ◽  
Author(s):  
V C Blok ◽  
G P Slater ◽  
E M Giblin

Several commercially available adsorbents were compared with solvent extraction methods for their utility in recovering trace organics from water. The adsorbents examined included Amberlite XAD-2, XAD-4 and XAD-8, Ambersorb XE340 and XE348 and Tenax-GC. All were found to produce high artifact levels, even after extensive clean-up, making them unsuitable for the analysis of trace organics in water. Quantitatively, Likens-Nickerson or continuous liquid-liquid extraction with méthylene chloride gave better recoveries than the adsorbents. Qualitatively, extractive methods were preferred as they yielded much lower levels of impurities than the adsorbents. These methods of recovering trace organics were evaluated using a standard mixture of compounds added to the water at a level of 55 µg/l. Likens-Nickerson extraction gave comparable recoveries of this mixture at 55 µg/l and 11 µg/l.



2021 ◽  
Vol 162 ◽  
pp. 105833
Author(s):  
Svetlana V. Smirnova ◽  
Kristina A. Lyskovtseva ◽  
Igor V. Pletnev




Sign in / Sign up

Export Citation Format

Share Document