scholarly journals BIM-Based Human Machine Interface (HMI) Framework for Energy Management

2020 ◽  
Vol 12 (21) ◽  
pp. 8861
Author(s):  
Taewook Kang

This study proposes a Building Information Modeling (BIM)-based Human Machine Interface (HMI) framework for intuitive space-based energy management. The BIM-based HMI supports building managers with a method of linking data between BIM and Building Energy Management System (BEMS), which are heterogeneous systems, and provides space-based real-time energy monitoring. This study also proposes a BIM and BEMS data linking framework for systematic BIM-based HMI development. Towards this end, the BIM-based HMI framework was defined after deriving the considerations and requirements necessary for linking the energy control point and BIM through a questionnaire designed by practitioners. Through case analysis, the authors implemented BIM-based HMI and analyzed its effects. The results of the analysis confirmed the positive effects (3.9/5.0) on the connectivity of BIM-based HMI, the benefits (4.3/5.0) for real-time data monitoring, the system function expandability, and the BIM-based spatial intuitiveness.

2013 ◽  
Vol 284-287 ◽  
pp. 3285-3289 ◽  
Author(s):  
Chung Lin Huang ◽  
Chung Chi Huang

In the paper, a cloud computing based intelligent scheduling system for manufacturing quality is proposed. Most of scheduling system is only considered producing time but manufacturing quality. It is very important to focus on manufacturing quality for the industry upgrade. The factors of manufacturing quality are product, equipment, material and human. It makes higher cost for scheduling the flexible manufacturing system. So we develop the cloud computing-based intelligent scheduling system by using artificial neural network and optimized layout method for manufacturing quality in the research. The architecture of the intelligent scheduling system contains: (1) Cloud database structure. (2) Intelligent scheduling engine. (3) Real-time human-machine interface. SQL Azure is used as the cloud database for scattering and storing data. And the intelligent scheduling engine contains the intelligent sequence score system of the products, the optimized layout system and the monitoring system of available resources. By using Visual C#, we can program a human-machine interface with real-time data updating. So that we can see real-time scheduling states of manufacturing by the human-machine interface at any time everywhere. We get good performance from the results of the experiment in the intelligent scheduling system considering manufacturing quality. It is important to develop a cloud computing-based intelligent scheduling system for manufacturing quality because of the advantages of production fluency, low cost, just good quality and flexible management.


2012 ◽  
Vol 472-475 ◽  
pp. 375-379
Author(s):  
Liu Ping ◽  
Shu Jun Huang ◽  
Jin Zhen Fan ◽  
Guo Yong Lin

The user interface of FANUC CNC system provides only the basic functions, leading to the state and performance of the real-time data can’t be shown to the users, and affect the machining accuracy, efficiency and machine maintenance. A method is proposed that the independent user interface of FANUC CNC system developed in C language for secondary, designed the friendly Human-Machine interface. The function of the interface have real-time processing to extract the status screen、classification detection devices screen、self-diagnosis display screen、help information display screen etc. After the application of CNC machine, the machine failure rate has dropped, the maintenance time has be reduced, and it can reflect the designer's intent and style of the machine manufacturer.


2021 ◽  
Author(s):  
Anastasios Perdios ◽  
Georgia Papacharalampous ◽  
Athanasios Dimas ◽  
Georgios Horsch ◽  
Irene Karathanasi ◽  
...  

<p>Research project “PerManeNt” aims at developing an integrated platform for operational monitoring, smart control, and sustainable energy management of the external aqueduct system of the city of Patras in western Greece, which consists of more than 60 km of pressurized pipeline, 44 pumping wells, 3 springs, 22 regulating tanks, and 14 pumping stations. Given the significance of the existing infrastructure, 5 main pipelines, 7 pumping wells, 9 reservoirs, and 5 pumping stations were selected to be monitored in the context of: a) real-time data collection, processing and visualization, b) near real-time detection of system malfunctioning and automatic alarm generation, and c) generation of short and longer term forecasts for the water demand and corresponding energy consumption rates, based on hydrometeorological data and environmental indices. The development of the integrated platform is expected to have significant scientific, financial, societal and environmental impacts including: i) efficient water resources management and environmental protection, ii) reduction of the operational costs and regulator expenses for system maintenance and management, iii) promotion of citizens’ awareness regarding environmental issues, and iv) significant improvement of the quality of services offered, including pricing and emergency planning.</p><p><strong>Acknowledgments:</strong></p><p>This research is co‐financed by the European Regional Development Fund of the European Union and Greek national funds through the Operational Program Competitiveness, Entrepreneurship and Innovation, under the call RESEARCH – CREATE – INNOVATE (project code: T2EDK-4177.</p>


IEEE Access ◽  
2020 ◽  
Vol 8 ◽  
pp. 84070-84081 ◽  
Author(s):  
Susanna Yu. Gordleeva ◽  
Sergey A. Lobov ◽  
Nikita A. Grigorev ◽  
Andrey O. Savosenkov ◽  
Maxim O. Shamshin ◽  
...  

2011 ◽  
Vol 2-3 ◽  
pp. 234-238
Author(s):  
Hai Tao Qi ◽  
Guang Lei Feng ◽  
Hong Wang

It introduces a design of the control system for rehabilitation horse based on MCU STC89C52. The system’s control core is an 8-bit MCU STC89C52. First, the user input commands through the keyboard, then send commands to the DA conversion chip PCF8591 which can achieve the digital signal to analog signal output after dealing with MCU. Finally, PCF8591 send analog signal to the speed controller of DC motor in order to control the DC motor’s speed. Meanwhile, it builds a human-machine interface (HMI) to display the real-time speed of the horse through LCD.


2014 ◽  
Vol 519-520 ◽  
pp. 70-73 ◽  
Author(s):  
Jing Bai ◽  
Tie Cheng Pu

Aiming at storing and transmitting the real time data of energy management system in the industrial production, an online data compression technique is proposed. Firstly, the auto regression model of a group of sequence is established. Secondly, the next sampled data can be predicted by the model. If the estimated error is in the allowable range, we save the parameters of model and the beginning data. Otherwise, we save the data and repeat the method from the next sampled data. At Last, the method is applied in electricity energy data compression of a beer production. The application result verifies the effectiveness of the proposed method.


2020 ◽  
Author(s):  
Enrico Boldrini ◽  
Paolo Mazzetti ◽  
Stefano Nativi ◽  
Mattia Santoro ◽  
Fabrizio Papeschi ◽  
...  

<p>The WMO Hydrological Observing System (WHOS) is a service-oriented System of Systems (SoS) linking hydrological data providers and users by enabling harmonized and real time discovery and access functionalities at global, regional, national and local scale. WHOS is being realized through a coordinated and collaborative effort amongst:</p><ul><li>National Hydrological Services (NHS) willing to publish their data to the benefit of a larger audience,</li> <li>Hydrologists, decision makers, app and portal authors willing to gain access to world-wide hydrological data,</li> <li>ESSI-Lab of CNR-IIA responsible for the WHOS broker component: a software framework in charge of enabling interoperability amongst the distributed heterogeneous systems belonging to data providers (e.g. data publishing services) and data consumers (e.g. web portals, libraries and apps),</li> <li>WMO Commission of Hydrology (CHy) providing guidance to WMO Member countries in operational hydrology, including capacity building, NHSs engagement and coordination of WHOS implementation.</li> </ul><p>In the last years two additional WMO regional programmes have been targeted to benefit from WHOS, operating as successful applications for others to follow:</p><ul><li>Plata river basin,</li> <li>Arctic-HYCOS.</li> </ul><p>Each programme operates with a “view” of the whole WHOS, a virtual subset composed only by the data sources that are relevant to its context.</p><p><strong>WHOS-Plata</strong> is currently brokering data sources from the following countries:</p><ul><li>Argentina (hydrological & meteorological data),</li> <li>Bolivia (meteorological data; hydrological data expected in the near future),</li> <li>Brazil (hydrological & meteorological data),</li> <li>Paraguay (meteorological data; hydrological data in process),</li> <li>Uruguay (hydrological & meteorological data).</li> </ul><p><strong>WHOS-Arctic</strong> is currently brokering data sources from the following countries:</p><ul><li>Canada (historical and real time data),</li> <li>Denmark (historical data),</li> <li>Finland (historical and real time data),</li> <li>Iceland (historical and real time data),</li> <li>Norway (historical and real time data),</li> <li>Russian (historical and real time data),</li> <li>United States (historical and real time data).</li> </ul><p>Each data source publishes its data online according to specific hydrological service protocols and/or APIs (e.g. CUAHSI HydroServer, USGS Water Services, FTP, SOAP, REST API, OData, WAF, OGC SOS, …). Each service protocol and API in turn implies support for a specific metadata and data model (e.g. WaterML, CSV, XML , JSON, USGS RDB, ZRXP, Observations & Measurements, …).</p><p>WHOS broker implements mediation and harmonization of all these heterogeneous standards, in order to seamlessly support discovery and access of all the available data to a growing set of data consumer systems (applications and libraries) without any implementation effort for them:</p><ul><li>52North Helgoland (through SOS v.2.0.0),</li> <li>CUAHSI HydroDesktop (through CUAHSI WaterOneFlow),</li> <li>National Water Institute of Argentina (INA) node.js WaterML client (through CUAHSI WaterOneFlow),</li> <li>DAB JS API (through DAB REST API),</li> <li>USGS GWIS JS API plotting library (through RDB service),</li> <li>R scripts (through R WaterML library),</li> <li>C# applications (through CUAHSI WaterOneFlow),</li> <li>UCAR jOAI (through OAI-PMH/WIGOS metadata).</li> </ul><p>In particular, the support of WIGOS metadata standard provides a set of observational metadata elements for the effective interpretation of observational data internationally.</p><p>In addition to metadata and data model heterogeneity, WHOS needs to tackle also semantics heterogeneity. WHOS broker makes use of a hydrology ontology (made available as a SPARQL endpoint) to augment WHOS discovery capabilities (e.g. to obtain translation of a hydrology search parameter in multiple languages).</p><p>Technical documentation to exercise WHOS broker is already online available, while the official public launch with a dedicated WMO WHOS web portal is expected shortly.</p>


Electronics ◽  
2020 ◽  
Vol 9 (1) ◽  
pp. 118
Author(s):  
Jawad Radhi Mahmood ◽  
Ramzy Salim Ali ◽  
Raed A. Abd-Alhameed

Engineering laboratories are key elements in engineering learning and are essential for a concrete understanding of engineering topics and experiments. These key laboratories are no longer just hardware-dependent, they are a creative combination of programmable hardware and also user-defined driving software. In this work, an educational power system protective relaying laboratory platform was designed and implemented using a programmable logic controller (PLC) and human–machine interface (HMI) in order to introduce engineering students to the operating mechanisms experimentally. It engaged the students in selecting settings and upgrading the inverse definite minimum time (IDMT) protection relays for overcurrent, overvoltage, undervoltage, and differential current. With the platform and the help of the HMI, the students mastered (or came close to mastering) the field of protective relays, especially those explicitly implemented in the platform. The students were also able to see the real-time response that is equivalent to the relay operation time of the protective relays under the various possible settings, and the kinesthetic learning that was involved gave them a deeper understanding of what is involved in relays upgrading.


Sign in / Sign up

Export Citation Format

Share Document