scholarly journals Analysis of Ownership Data from Consolidated Land Threatened by Water Erosion in the Vlára Basin, Slovakia

2020 ◽  
Vol 13 (1) ◽  
pp. 51
Author(s):  
Alexandra Pagáč Mokrá ◽  
Jakub Pagáč ◽  
Zlatica Muchová ◽  
František Petrovič

Water erosion is a phenomenon that significantly damages agricultural land. The current land fragmentation in Slovakia and the complete ambiguity of who owns it leads to a lack of responsibility to care for the land in its current condition, which could affect its sustainability in the future. The reason so much soil has eroded is obvious when looking at current land management, with large fields, a lack of windbreaks between them, and no barriers to prevent soil runoff. Land consolidation might be the solution. This paper seeks to evaluate redistributed land and, based on modeling by the Universal Soil Loss Equation (USLE) method, to assess the degree of soil erosion risk. Ownership data provided information on how many owners and what amount of area to consider, while taking into account new conditions regarding water erosion. The results indicate that 2488 plots of 1607 owners which represent 12% of the model area are still endangered by water erosion, even after the completion of the land consolidation project. The results also presented a way of evaluating the territory and aims to trigger a discussion regarding an unambiguous definition of responsibility in the relationship between owner and user.

2017 ◽  
Vol 32 (1) ◽  
pp. 13-23 ◽  
Author(s):  
Hamza Bouguerra ◽  
Abderrazak Bouanani ◽  
Kamel Khanchoul ◽  
Oussama Derdous ◽  
Salah Eddine Tachi

Abstract Soil erosion by water is a major problem that the Northern part of Algeria witnesses nowadays; it reduces: the productivity of agricultural areas due to the loss of lands, and leads to the loss of storage capacity in reservoirs, the deterioration of water quality etc. The aim of this study is to evaluate the soil losses due to water erosion, and to identify the sectors which are potentially sensitive to water erosion in the Bouhamdane watershed, that is located in the northeastern part of Algeria. To this end, the Revised Universal Soil Loss Equation (RUSLE) was used. The application of this equation takes into account five parameters, namely the rainfall erosivity, topography, soil erodibility, vegetative cover and erosion control practices. The product of these parameters under GIS using the RUSLE mathematical equation has enabled evaluating an annual average erosion rate for the Bouhamdane watershed of 11.18 t·ha-1·y-1. Based on the estimates of soil loss in each grid cell, a soil erosion risk map with five risk classes was elaborated. The spatial distribution of risk classes was 16% very low, 41% low, 28% moderate, 12% high and 3% very high. Most areas showing high and very high erosion risk occurred in the lower Bouhamdane watershed around Hammam Debagh dam. These areas require adequate erosion control practices to be implemented on a priority basis in order to conserve soil resources and reduce siltation in the reservoir.


Solid Earth ◽  
2017 ◽  
Vol 8 (3) ◽  
pp. 661-669 ◽  
Author(s):  
Yue Li ◽  
Xiao Yong Bai ◽  
Shi Jie Wang ◽  
Luo Yi Qin ◽  
Yi Chao Tian ◽  
...  

Abstract. Soil loss tolerance (T value) is one of the criteria in determining the necessity of erosion control measures and ecological restoration strategy. However, the validity of this criterion in subtropical karst regions is strongly disputed. In this study, T value is calculated based on soil formation rate by using a digital distribution map of carbonate rock assemblage types. Results indicated a spatial heterogeneity and diversity in soil loss tolerance. Instead of only one criterion, a minimum of three criteria should be considered when investigating the carbonate areas of southern China because the one region, one T value concept may not be applicable to this region. T value is proportionate to the amount of argillaceous material, which determines the surface soil thickness of the formations in homogenous carbonate rock areas. Homogenous carbonate rock, carbonate rock intercalated with clastic rock areas and carbonate/clastic rock alternation areas have T values of 20, 50 and 100 t/(km2 a), and they are extremely, severely and moderately sensitive to soil erosion. Karst rocky desertification (KRD) is defined as extreme soil erosion and reflects the risks of erosion. Thus, the relationship between T value and erosion risk is determined using KRD as a parameter. The existence of KRD land is unrelated to the T value, although this parameter indicates erosion sensitivity. Erosion risk is strongly dependent on the relationship between real soil loss (RL) and T value rather than on either erosion intensity or the T value itself. If RL > > T, then the erosion risk is high despite of a low RL. Conversely, if T > > RL, then the soil is safe although RL is high. Overall, these findings may clarify the heterogeneity of T value and its effect on erosion risk in a karst environment.


Water ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 2786 ◽  
Author(s):  
Safwan Mohammed ◽  
Hazem G. Abdo ◽  
Szilard Szabo ◽  
Quoc Bao Pham ◽  
Imre J. Holb ◽  
...  

Soils in the coastal region of Syria (CRoS) are one of the most fragile components of natural ecosystems. However, they are adversely affected by water erosion processes after extreme land cover modifications such as wildfires or intensive agricultural activities. The main goal of this research was to clarify the dynamic interaction between erosion processes and different ecosystem components (inclination, land cover/land use, and rainy storms) along with the vulnerable territory of the CRoS. Experiments were carried out in five different locations using a total of 15 erosion plots. Soil loss and runoff were quantified in each experimental plot, considering different inclinations and land uses (agricultural land (AG), burnt forest (BF), forest/control plot (F)). Observed runoff and soil loss varied greatly according to both inclination and land cover after 750 mm of rainfall (26 events). In the cultivated areas, the average soil water erosion ranged between 0.14 ± 0.07 and 0.74 ± 0.33 kg/m2; in the BF plots, mean soil erosion ranged between 0.03 ± 0.01 and 0.24 ± 0.10 kg/m2. The lowest amount of erosion was recorded in the F plots where the erosion ranged between 0.1 ± 0.001 and 0.07 ± 0.03 kg/m2. Interestingly, the General Linear Model revealed that all factors (i.e., inclination, rainfall and land use) had a significant (p < 0.001) effect on the soil loss. We concluded that human activities greatly influenced soil erosion rates, being higher in the AG lands, followed by BF and F. Therefore, the current study could be very useful to policymakers and planners for proposing immediate conservation or restoration plans in a less studied area which has been shown to be vulnerable to soil erosion processes.


2019 ◽  
Vol 2019 ◽  
pp. 1-15 ◽  
Author(s):  
D. L. D. Panditharathne ◽  
N. S. Abeysingha ◽  
K. G. S. Nirmanee ◽  
Ananda Mallawatantri

Soil erosion is one of the main forms of land degradation. Erosion contributes to loss of agricultural land productivity and ecological and esthetic values of natural environment, and it impairs the production of safe drinking water and hydroenergy production. Thus, assessment of soil erosion and identifying the lands more prone to erosion are vital for erosion management process. Revised Universal Soil Loss Equation (Rusle) model supported by a GIS system was used to assess the spatial variability of erosion occurring at Kalu Ganga river basin in Sri Lanka. Digital Elevation Model (30 × 30 m), twenty years’ rainfall data measured at 11 rain gauge stations across the basin, land use and soil maps, and published literature were used as inputs to the model. The average annual soil loss in Kalu Ganga river basin varied from 0 to 134 t ha−1 year−1 and mean annual soil loss was estimated at 0.63 t ha−1 year−1. Based on erosion estimates, the basin landscape was divided into four different erosion severity classes: very low, low, moderate, and high. About 1.68% of the areas (4714 ha) in the river basin were identified with moderate to high erosion severity (>5 t ha−1 year−1) class which urgently need measures to control soil erosion. Lands with moderate to high soil erosion classes were mostly found in Bulathsinghala, Kuruwita, and Rathnapura divisional secretarial divisions. Use of the erosion severity information coupled with basin wide individual RUSLE parameters can help to design the appropriate land use management practices and improved management based on the observations to minimize soil erosion in the basin.


2020 ◽  
Vol 12 (15) ◽  
pp. 5898 ◽  
Author(s):  
Bilal Aslam ◽  
Ahsen Maqsoom ◽  
Shahzaib ◽  
Zaheer Abbas Kazmi ◽  
Mahmoud Sodangi ◽  
...  

The world’s ecosystem is severely affected by the increase in the rate of soil erosion and sediment transport in the built environment and agricultural lands. Land use land cover changes (LULCC) are considered as the most significant cause of sediment transport. This study aims to estimate the effect of LULCC on soil erosion potential in the past 20 years (2000–2020) by using Revised Universal Soil Loss Equation (RUSLE) model based on Geographic Information System (GIS). Different factors were analyzed to study the effect of each factor including R factor, K factor, LS factor, and land cover factor on the erosion process. Maps generated in the study show the changes in the severity of soil loss in the Chitral district of Pakistan. It was found out that 4% of the area was under very high erosion risk in the year 2000 which increased to 8% in the year 2020. An increase in agricultural land (4%) was observed in the last 20 years which shows that human activities largely affected the study area. The outcomes of this study will help the stakeholders and regulatory decision makers to control deforestation and take other necessary actions to minimize the rate of soil erosion. Such an efficient planning will also be helpful to reduce the sedimentation in the reservoir of hydraulic dam(s) constructed on Chitral river, which drains through this watershed.


2013 ◽  
Vol 37 (5) ◽  
pp. 427-434 ◽  
Author(s):  
Junior Cesar Avanzi ◽  
Marx Leandro Naves Silva ◽  
Nilton Curi ◽  
Lloyd Darrell Norton ◽  
Samuel Beskow ◽  
...  

The process of water erosion occurs in watersheds throughout the world and it is strongly affected by anthropogenic influences. Thus, the knowledge of these processes is extremely necessary for planning of conservation efforts. This study was performed in an experimental forested watershed in order to predict the average potential annual soil loss by water erosion using the Universal Soil Loss Equation (USLE) and a Geographic Information System (GIS), and then compared with soil loss tolerance. All the USLE factors were generated in a distributed approach employing a GIS tool. The layers were multiplied in the GIS framework in order to predict soil erosion rates. Results showed that the average soil loss was 6.2 Mg ha-1 yr-1. Relative to soil loss tolerance, 83% of the area had an erosion rate lesser than the tolerable value. According to soil loss classes, 49% of the watershed had erosion less than 2.5 Mg ha-1 yr-1. However, about 8.7% of the watershed had erosion rates greater than 15 Mg ha-1 yr-1, being mainly related to Plinthosol soil class and roads, thus requiring special attention for the improvement of sustainable management practices for such areas. Eucalyptus cultivation was found to have soil loss greater than Atlantic Forest. Thus, an effort should be made to bring the erosion rates closer to the native forest. Implementation of the USLE model in a GIS framework was found to be a simple and useful tool for predicting the spatial variation of soil erosion risk and identifying critical areas for conservation efforts.


2011 ◽  
Vol 399 (3-4) ◽  
pp. 263-273 ◽  
Author(s):  
Soyoung Park ◽  
Cheyoung Oh ◽  
Seongwoo Jeon ◽  
Huicheul Jung ◽  
Chuluong Choi

Sign in / Sign up

Export Citation Format

Share Document