scholarly journals Estimation of the Evapotranspiration and Crop Coefficients of Bell Pepper Using a Removable Weighing Lysimeter: A Case Study in the Southeast of Spain

2021 ◽  
Vol 13 (2) ◽  
pp. 747
Author(s):  
Laura Ávila-Dávila ◽  
José Miguel Molina-Martínez ◽  
Carlos Bautista-Capetillo ◽  
Manuel Soler-Méndez ◽  
Cruz Octavio Robles Rovelo ◽  
...  

Water use efficiency is essential in semiarid regions of Spain, and it can be achieved through a precise knowledge of the real crop water requirements (CWR). The Food and Agriculture Organization of the United Nations (FAO) offers standardized crop coefficients to establish the CWR. However, these coefficients can change due to different conditions, such as climatic variations and cultivation practices. In this work, the evapotranspiration (ETClys) and crop coefficients (KClys) of bell pepper were obtained with a compact removable weighing lysimeter between February and August for two crop seasons (2019 and 2020). ETClys was determined from the water balance, and the KClys values were determined as the ratio of the crop evapotranspiration, measured on the removable weighing lysimeter, and the reference evapotranspiration. The KClys average values for the bell pepper in the initial, middle, and final stages were 0.57, 1.06, and 0.80, respectively. KC regression models were obtained as a function of the fraction thermal units, achieving a maximum correlation of 0.67 (R2). In general, the KC values obtained in this research work were lower in the initial and in the final stages and larger in the middle stage in comparison with the FAO-56 values and other research works values in semiarid conditions. The bell pepper yield increased by 7.72% in 2019 and by 3.49% in 2020 compared to the yield reported by the Ministry of the Environment and Rural and Marine Areas of the Spanish Government in 2019 and with a minimum water loss through drainage. The results in this work can help farmers to determine the crop water requirements and to improve the system efficiency in semiarid locations with similar conditions to those in the study.

2014 ◽  
Vol 11 (5) ◽  
pp. 5367-5375
Author(s):  
W. J. Shuttleworth

Abstract. It is clear from Lhomme et al. (2014) that aspects of the explanation of the Matt–Shuttleworth approach can generate confusion. Presumably this is because the description in Shuttleworth (2006) was not sufficiently explicit and simple. This paper explains the logic behind the Matt–Shuttleworth approach clearly, simply and concisely. It shows how the Matt–Shuttleworth can be implemented using a few simple equations and provides access to ancillary calculation resources that can be used for such implementation. If the crop water requirement community decided that it is preferable to use the Penman–Monteith equation to estimate crop water requirements directly for all crops, the United Nations Food and Agriculture Organization could now update Irrigation and Drainage Paper 56 using the Matt–Shuttleworth approach by deriving tabulated values of surface resistance from Table 12 of Allen et al. (1998), with the estimation of crop evaporation then being directly made in a one-step calculation using an equation similar to that already recommended by the United Nations Food and Agriculture Organization for calculating reference crop evaporation.


2014 ◽  
Vol 18 (11) ◽  
pp. 4403-4406 ◽  
Author(s):  
W. J. Shuttleworth

Abstract. It is clear from Lhomme et al. (2014) that aspects of the explanation of the Matt–Shuttleworth approach can generate confusion. Presumably this is because the description in Shuttleworth (2006) was not sufficiently explicit and simple. This paper explains the logic behind the Matt–Shuttleworth approach clearly, simply and concisely. It shows how the Matt–Shuttleworth can be implemented using a few simple equations and provides access to ancillary calculation resources that can be used for such implementation. If the crop water requirement community decided that it is preferable to use the Penman–Monteith equation to estimate crop water requirements directly for all crops, the United Nations Food and Agriculture Organization could now update Irrigation and Drainage Paper 56 using the Matt–Shuttleworth approach by deriving tabulated values of surface resistance from Table 12 of Allen et al. (1998), with the estimation of crop evaporation then being directly made in a one-step calculation using an equation similar to that already recommended by the United Nations Food and Agriculture Organization for calculating reference crop evaporation.


2006 ◽  
Vol 22 (6) ◽  
pp. 851-856 ◽  
Author(s):  
T. Marek ◽  
G. Piccinni ◽  
A. Schneider ◽  
T. Howell ◽  
M. Jett ◽  
...  

2021 ◽  
Author(s):  
Joachim Namyslo

<p>Im Rahmen einer agrarmeteorologischen Beratung ist die Berechnung der Verdunstung für spezifische Agrarkulturen mit geeigneten Modellen möglichst auf einer stündlichen Zeitskala erforderlich. Im DWD ist hierzu das Modell AMBAV (Agrarmeteorologisches Modell zur Berechnung der aktuellen Verdunstung) entwickelt worden und wird für die nationale agrarmeteorologische Beratung operationell mit Vorhersagedaten und für Wirkanalysen auch mit Klimadaten verwendet. Insbesondere hinsichtlich globaler Anwendungen liegen gemessene oder mit Klimamodellen berechnete meteorologische Datenzeitreihen häufig nur für eine tägliche Zeitskala, oder als Modelldaten für ausgewählte Elemente bestenfalls in einer 6-stündigen Zeitskala, vor. Dies sind Tagesmittel oder Tagessummen (z.B. Wind bzw. Globalstrahlung und Niederschlag) sowie gegebenenfalls tägliche Extremwerte (Minimum und Maximum der Lufttemperatur, stärkste Tagesböe).</p> <p>Zur Bereitstellung stündlicher Daten aus Tagesdaten wurde daher ein Präprozessor entwickelt, der gemessene Stationsdaten (Modus „Station“) oder modellierte Daten globaler Modelle (Modus „Gitter“) verwendet. Dabei wurde vorausgesetzt, dass im Vorfeld einer Erarbeitung von zeitlichen Disaggregierungsverfahren keine umfangreichen Klimaanalysen durchgeführt werden müssen sondern weitestgehend auf Erfahrung zurückgegriffen werden kann. Vorhandene Programme (z.B. MELODIST) konnten jedoch wegen teilweise anderer Zielstellung oder Datenanforderungen nicht ohne weiteres verwendet werden. So wurde z.B. für die Tagessumme der Globalstrahlung auf das Angström-Verfahren (FAO, 1998), für den Niederschlag auf das Kaskadenverfahren nach Olsson (1998), für die Lufttemperatur auf den „sin-exp-Ansatz“ nach Parton und Logan (1981) und für den Wind auf die „normierte Böen­geschwindigkeit“ (Verkaik, 2000) zurückgegriffen. Für erforderliche Interpolationen werden das Newton-Verfahren und das „cubic hermite spline“ verwendet.</p> <p>Die vorgestellten Verfahren werden mit Stationsdaten des ZAMF und beispielhaft mit Modelldaten des GFCS für Madagaskar angewendet.</p> <p><strong>Literatur</strong></p> <p>FAO (Food and Agriculture Organization), 1998: Crop evaporation – Guidelines for computing crop water requirements. Irrigation and Drainage Paper 56, 300 p.</p> <p>Olsson, J., 1998: Evaluation of a scaling cascade model for temporal rainfall disaggregation. Hydrology and Earth System Sciences, 2, p.19-30.</p> <p>Parton, W.J. and J.A. Logan, 1981: A model for diurnal variation in soil and air temperature. Agricultural Meteorology, 23, p.205-216.</p> <p>Verkaik, J.W., 2000: Evaluation of two gustiness models for exposure correction calculations. Journal of Applied Meteorology, 39, p.1613-1626.</p>


2015 ◽  
Vol 12 (5) ◽  
pp. 4933-4963 ◽  
Author(s):  
J. P. Lhomme ◽  
N. Boudhina ◽  
M. M. Masmoudi ◽  
A. Chehbouni

Abstract. Crop water requirements are commonly estimated with the FAO-56 methodology based upon a "two-step" approach: first a reference evapotranspiration (ET0) is calculated from weather variables with the Penman–Monteith equation; then ET0 is multiplied by a tabulated crop-specific coefficient (Kc) to determine the water requirement (ETc) of a given crop under standard conditions. This method has been challenged to the benefit of a "one-step" approach, where crop evapotranspiration is directly calculated from a Penman–Monteith equation, its surface resistance replacing the crop coefficient. Whereas the transformation of the two-step approach into a one-step approach has been well documented when a single crop coefficient (Kc) is used, the case of dual crop coefficients (Kcb for the crop and Ke for the soil) has not been treated yet. The present paper examines this specific case. Using a full two-layer model as a reference, it is shown that the FAO-56 dual crop coefficient approach can be translated into a one-step approach based upon a modified combination equation. This equation has the basic form of the Penman–Monteith equation, but its surface resistance is calculated as the parallel sum of a foliage resistance (replacing Kcb) and a soil surface resistance (replacing Ke). We also show that the foliage resistance, which depends on leaf stomatal resistance and leaf area, can be inferred from the basal crop coefficient (Kcb) in a way similar to the Matt–Shuttleworth method.


2021 ◽  
Vol 243 ◽  
pp. 106196
Author(s):  
L.S. Pereira ◽  
P. Paredes ◽  
R. López-Urrea ◽  
D.J. Hunsaker ◽  
M. Mota ◽  
...  

2021 ◽  
Author(s):  
Waseem Khan ◽  
Mogtaba Y. ◽  
Jamshaid Rahman ◽  
Murtada Elbashir ◽  
Ziyad AlHussain ◽  
...  

Abstract The Food and Agriculture Organization (FAO) CROPWAT 8.0 standard software and the CLIMWAT 2.0 tool affixed to it have been utilized in this study for Qassim Region of Saudi Arabia to find CWRs and irrigation plans for numerous extremely valuable crops of KSA. We were used CROPWAT P. M. method for find out the ETo and (USAD) S. C. method utilized to determine roughly effective rainfall. The analysis demonstrated that ETo change over from 2.84 mm/day in January to reach maximum 9.61 mm/day in July due to high temperature in summer with annual mean was 6.33 mm/day, effective rainfall changes from 0 mm to 53.4 mm. The total IWRs were 308.3 mm/dec, 335.9 mm/dec, 343.6 mm/dec, 853 mm/dec and 1479.6 mm/dec for Barley, Wheat, Maize, Rice and Citrus, respectively. Due to low demand in winter and high demand in summer, the total net irrigation and total gross irrigations are 210.6 mm and 147.4 mm, 176.6 mm and 123.6 mm, 204.5 mm and 143.2 mm, 163.9 mm and 114.7mm for Wheat, Barley, Citrus, and Maize respectively except rice crop. These results showed that Wheat, Barley, Citrus, Maize and Rice crops have 4, 4, 12, 4 and 12 irrigation schedules respectively in a year.


2021 ◽  
Vol 243 ◽  
pp. 106466
Author(s):  
L.S. Pereira ◽  
P. Paredes ◽  
D.J. Hunsaker ◽  
R. López-Urrea ◽  
Z. Mohammadi Shad

Sign in / Sign up

Export Citation Format

Share Document