scholarly journals Utilization of Industrial By-Products/Waste to Manufacture Geopolymer Cement/Concrete

2021 ◽  
Vol 13 (2) ◽  
pp. 873
Author(s):  
Numanuddin M. Azad ◽  
S.M. Samindi M.K. Samarakoon

There has been a significant movement in the past decades to develop alternative sustainable building material such as geopolymer cement/concrete to control CO2 emission. Industrial waste contains pozzolanic minerals that fulfil requirements to develop the sustainable material such as alumino-silicate based geopolymer. For example, industrial waste such as red mud, fly ash, GBFS/GGBS (granulated blast furnace slag/ground granulated blast furnace slag), rice husk ash (RHA), and bagasse ash consist of minerals that contribute to the manufacturing of geopolymer cement/concrete. A literature review was carried out to study the different industrial waste/by-products and their chemical composition, which is vital for producing geopolymer cement, and to discuss the mechanical properties of geopolymer cement/concrete manufactured using different industrial waste/by-products. The durability, financial benefits and sustainability aspects of geopolymer cement/concrete have been highlighted. As per the experimental results from the literature, the cited industrial waste has been successfully utilized for the synthesis of dry or wet geopolymers. The review revealed that that the use of fly ash, GBFS/GGBS and RHA in geopolymer concrete resulted high compressive strength (i.e., 50 MPa–70 MPa). For high strength (>70 MPa) achievement, most of the slag and ash-based geopolymer cement/concrete in synergy with nano processed waste have shown good mechanical properties and environmental resistant. The alkali-activated geopolymer slag, red mud and fly ash based geopolymer binders give a better durability performance compared with other industrial waste. Based on the sustainability indicators, most of the geopolymers developed using the industrial waste have a positive impact on the environment, society and economy.

2017 ◽  
Vol 2017 ◽  
pp. 1-10 ◽  
Author(s):  
Jun Yang ◽  
Qiang Wang ◽  
Yuqi Zhou

Plain cement concrete, ground granulated blast furnace slag (GGBS) concrete, and fly ash concrete were designed. Three wet curing periods were employed, which were 2, 5, and 8 days. The drying shrinkage values of the concretes were measured within 1 year after wet curing. The results show that the increasing rate of the drying shrinkage of concrete containing a mineral admixture at late age is higher than that of plain cement concrete regardless of the wet curing time. With the reduction of wet curing time, the increment of total drying shrinkage of concrete decreases with the decrease of the W/B ratio. The negative effects on the drying shrinkage of fly ash concrete due to the reduction of the wet curing time are much more obvious than those of GGBS concrete and plain cement concrete. Superfine ground granulated blast furnace slag (SGGBS) can reduce the drying shrinkage of GGBS concrete and fly ash concrete when the wet curing time is insufficient.


2020 ◽  
Vol 2 (3) ◽  
pp. 128-133
Author(s):  
Addepalli Mallinadh Kashyap ◽  
Tanimki Chandra Sekhar Rao ◽  
N.V.Ramana Rao

The utilisation of pozzolanic materials as the replacement to conventional cement material have the potentiality to mitigate the pollution caused by the émission of carbon based green house gases which are a main source for global warming problem. For every production of 1 ton of cement it was approximated that the emission of carbon based green house gases are about 1 ton. Keeping this in view, a new material called Geopolymer which was first coined by Davidovits has gained a lot of interest by the researchers. In this study, different molarity variations of NaOH in the order of 4M, 6M, 8M, 10M, 12M and 14M and also the blending of  mineral admixtures like Fly Ash and Ground Granulated Blast Furnace Slag with percentages (50%+50%) and the mechanical properties of normal M30 and high strength grade M70 binary blended Geopolymer concrete were studied after 28 days of ambient curing and were reported. The test results revealed that the effect of molar concentration of NaOH at 12 M is effective and the optimum replacement of mineral composition of source materials is (50%+50%) fly ash and ground granulated blast furnace slag.  


2018 ◽  
Vol 7 (1) ◽  
pp. 19-23
Author(s):  
S. Thirupathiraj .

Cement is the core content for the concrete mix. Manufacturing of cement causes CO2 emission which leads to the pollution, health and environmental problems like global warming to control over the adverse effect we can prefer geopolymer concrete which is not a cement concrete. Factory wastes such as fly ash, ground granulated blast furnace slag (GGBS), silica fume and Metakaolin can be used as alternate for cement. This study mainly focus on the ratio of fly ash and ground granulated blast furnace slag (GGBS) for optimum levels which nearly matches the cement concrete properties. This study involves the various tests like slump flow, compression testing, split tensile strength and flexural strength of self-compacting geopolymer concrete. Self-compacting concrete is a highly flowable concrete that spreads into the form without the need of mechanical vibration. Self-compacting concrete is a non-segregating concrete that is placed by means of its own weight. The advantages include improved constructability, Labour reduction, bond to steel, Flow into complex forms, reduced equipment wear etc. The aim of this study is to achieve an optimum self-compacting concrete geopolymer concrete mix proportion using fly ash and ground granulated blast furnace slag (GGBS). Then the study will be further extended by investigating the durability properties of self-compacting geopolymer concrete.


Structures built with normal concrete are fading out from the construction industry due to the development of high strength concrete. The massive structures such as sky scrapers, bridges, tunnels, nuclear plants, underground structures need high strength concrete to withstand the high intensity vertical, horizontal and moving loads etc. The development of high strength alkaline activated concrete will reduce the usage of cement in construction community. Lesser the utilisation of cement will lessen the high emission of carbon dioxide gas into the atmosphere. In this study, high strength concrete using alumina and silica rich materials are made with a mix ratio of 1:1.31:2.22. The water to cement ratio for high strength cement concrete and the alkaline solution to binder ratio for alkaline activated concrete are kept as 0.35. Low calcium fly ash, Ground Granulated Blast Furnace Slag (GGBS) and Metakaolin are used as binders and Manufacturing Sand is used as fine aggregate to made high strength alkaline activated concrete. The high strength alkaline activated concrete tests results are better than the high strength cement concrete.


Sign in / Sign up

Export Citation Format

Share Document