scholarly journals The Hidden Characteristics of Land-Use Mix Indices: An Overview and Validity Analysis Based on the Land Use in Melbourne, Australia

2021 ◽  
Vol 13 (4) ◽  
pp. 1898
Author(s):  
Jiacheng Jiao ◽  
John Rollo ◽  
Baibai Fu

The land-use mix index is a way to quantify the mixture of land-use patterns. Due to practical limitations, few studies have highlighted the validity of land-use mix indices. This paper aims to explore the potential characteristics of land-use mix indices using a three-step screening method. The data precision of indices was concluded after the first-step screening. A total of 10 virtual blocks and 217 blocks in Melbourne city center served as a case study and reflected the various land-use structures. The randomized controlled comparative trial was incorporated into the second- and third-screening to indicate the applicable condition and validity. The results illustrate that the value Herfindahl–Hirschman index related to the diversity of land-use types. The results also confirmed that Dissimilarity index-I was significantly associated with the balance status of the land-use mix. Entropy index reflects the evenness but did not correlate to the diversity or balance of the land-use mix. In addition, the study also provides a set of general recommendations for the application conditions of land-use mix indices.

2012 ◽  
Vol 16 (8) ◽  
pp. 2739-2748 ◽  
Author(s):  
W. W. Zhao ◽  
B. J. Fu ◽  
L. D. Chen

Abstract. Land use and land cover are most important in quantifying soil erosion. Based on the C-factor of the popular soil erosion model, Revised Universal Soil Loss Equation (RUSLE) and a scale-pattern-process theory in landscape ecology, we proposed a multi-scale soil loss evaluation index (SL) to evaluate the effects of land use patterns on soil erosion. We examined the advantages and shortcomings of SL for small watershed (SLsw) by comparing to the C-factor used in RUSLE. We used the Yanhe watershed located on China's Loess Plateau as a case study to demonstrate the utilities of SLsw. The SLsw calculation involves the delineations of the drainage network and sub-watershed boundaries, the calculations of soil loss horizontal distance index, the soil loss vertical distance index, slope steepness, rainfall-runoff erosivity, soil erodibility, and cover and management practice. We used several extensions within the geographic information system (GIS), and AVSWAT2000 hydrological model to derive all the required GIS layers. We compared the SLsw with the C-factor to identify spatial patterns to understand the causes for the differences. The SLsw values for the Yanhe watershed are in the range of 0.15 to 0.45, and there are 593 sub-watersheds with SLsw values that are lower than the C-factor values (LOW) and 227 sub-watersheds with SLsw values higher than the C-factor values (HIGH). The HIGH area have greater rainfall-runoff erosivity than LOW area for all land use types. The cultivated land is located on the steeper slope or is closer to the drainage network in the horizontal direction in HIGH area in comparison to LOW area. The results imply that SLsw can be used to identify the effect of land use distribution on soil loss, whereas the C-factor has less power to do it. Both HIGH and LOW areas have similar soil erodibility values for all land use types. The average vertical distances of forest land and sparse forest land to the drainage network are shorter in LOW area than that in HIGH area. Other land use types have shorter average vertical distances in HIGH area than that LOW area. SLsw has advantages over C-factor in its ability to specify the subwatersheds that require the land use patterns optimization by adjusting the locations of land uses to minimize soil loss.


Land ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 2
Author(s):  
Haochen Shi ◽  
Miaoxi Zhao ◽  
Duncan A. Simth ◽  
Bin Chi

Land use mix (LUM) has long been employed as one of the key methods to improve urban vibrancy and optimize built-up areas. Within the urban studies discipline, LUM is usually defined as a functional compatible but diverse land use pattern. However, its quantitative methodological approaches thereby heavily rely on the diversity of land use and fail to consider functional compatibility as another critical defining characteristic, providing only a partial picture of land use pattern. Thus, reviewing LUM’s concepts and definitions, this paper develops a new index to describe functional compatibility according to the spatial segregation measurements. To evaluate and provide empirical evidence of the proposed index, this paper selects the medium-sized city of Xiangtan as a case study. The findings demonstrate that Xiangtan exhibits a quite compatible land use pattern to a certain extent. In addition, particular clusters with relatively incompatible land use patterns are observed, which are closely linked to a special historical working unit, the ‘Danwei’ compounds, and a special rural planning authority, ‘Township-Village-Enterprise’, in China. Finally, an integrated evaluation is conducted based on the proposed index and Shannon entropy index, which can be regarded as a useful tool in future land use planning while contributing to shaping a sustainable form of urban development.


2015 ◽  
Vol 11 (1) ◽  
pp. 135-154
Author(s):  
Stephen Rippon ◽  
Ralph Fyfe

AbstractThis paper explores the contribution that palaeoenvironmental evidence, and in particular palynology, is making to our understanding of landscape evolution in Britain during the 1st millenniumAD. This was a period of profound social and economic change including a series of invasions, some associated with a mass folk migration. Archaeologists and historians continue to debate the significance of these events, and palaeoenvironmental evidence is now starting to provide an additional perspective. Key to this has been obtaining pollen sequences, although there remains a need for more evidence from lowland areas, alongside higher resolution sampling and improved dating. It is suggested that although the 1st millenniumADsaw some significant long-term shifts in climate, these are unlikely to have had a significant causal effect on landscape change in lowland areas (both in areas with and without significant Anglo-Saxon immigration). The analysis of pollen data from across Britain shows very marked regional variations in the major land-use types (arable, woodland, improved pasture, and unimproved pasture) throughout the Roman and Early Medieval periods. While Britain ceasing to be part of the Roman empire appears to have led to a decline in the intensity of agriculture, it was the ‘long 8th c.’ (the later 7th to early 9th c.) that saw a more profound change, with a period of investment, innovation, and intensification, including an expansion in arable cultivation.


2015 ◽  
Vol 35 (16) ◽  
Author(s):  
李清良 LI Qingliang ◽  
吴倩 WU Qian ◽  
高进波 GAO Jinbo ◽  
马军 MA Jun ◽  
徐秋芳 XU Qiufang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document