scholarly journals Offshore Wind Energy Resource Assessment across the Territory of Oman: A Spatial-Temporal Data Analysis

2021 ◽  
Vol 13 (5) ◽  
pp. 2862
Author(s):  
Amer Al-Hinai ◽  
Yassine Charabi ◽  
Seyed H. Aghay Kaboli

Despite the long shoreline of Oman, the wind energy industry is still confined to onshore due to the lack of knowledge about offshore wind potential. A spatial-temporal wind data analysis is performed in this research to find the locations in Oman’s territorial seas with the highest potential for offshore wind energy. Thus, wind data are statistically analyzed for assessing wind characteristics. Statistical analysis of wind data include the wind power density, and Weibull scale and shape factors. In addition, there is an estimation of the possible energy production and capacity factor by three commercial offshore wind turbines suitable for 80 up to a 110 m hub height. The findings show that offshore wind turbines can produce at least 1.34 times more energy than land-based and nearshore wind turbines. Additionally, offshore wind turbines generate more power in the Omani peak electricity demand during the summer. Thus, offshore wind turbines have great advantages over land-based wind turbines in Oman. Overall, this work provides guidance on the deployment and production of offshore wind energy in Oman. A thorough study using bankable wind data along with various logistical considerations would still be required to turn offshore wind potential into real wind farms in Oman.

Author(s):  
Abdollah A. Afjeh ◽  
◽  
Brett Andersen ◽  
Jin Woo Lee ◽  
Mahdi Norouzi ◽  
...  

Development of novel offshore wind turbine designs and technologies are necessary to reduce the cost of offshore wind energy since offshore wind turbines need to withstand ice and waves in addition to wind, a markedly different environment from their onshore counterparts. This paper focuses on major design challenges of offshore wind turbines and offers an advanced concept wind turbine that can significantly reduce the cost of offshore wind energy as an alternative to the current popular designs. The design consists of a two-blade, downwind rotor configuration fitted to a fixed bottom or floating foundation. Preliminary results indicate that cost savings of nearly 25% are possible compared with the conventional upwind wind turbine designs.


2021 ◽  
Author(s):  
Aurélien Babarit ◽  
Félix Gorintin ◽  
Pierrick de Belizal ◽  
Antoine Neau ◽  
Giovanni Bordogna ◽  
...  

Abstract. This paper deals with a new concept for the conversion of far-offshore wind energy into sustainable fuel. It relies on autonomous sailing energy ships and manned support tankers. Energy ships are wind-propelled ships that generate electricity using water turbines attached underneath their hull. Since energy ships are not grid-connected, they include onboard power-to-X plants for storage of the produced energy. In the present work, the energy vector X is methanol. In the first part of this study (Babarit et al., 2020), an energy ship design has been proposed and its energy performance has been assessed. In this second part, the aim is to estimate the energy and economic performance of such system. In collaboration with ocean engineering, marine renewable energy and wind-assisted propulsion’s experts, the energy ship design of the first part has been revised and updated. Based on this new design, a complete FARWIND energy system is proposed, and its costs (CAPEX and OPEX) are estimated. Results of the models show (i) that this FARWIND system could produce approximately 70,000 tonnes of methanol per annum (approximately 400 GWh per annum of chemical energy) at a cost in the range 1.2 to 3.6 €/kg, (ii) that this cost may be comparable to that of methanol produced by offshore wind farms in the long term, and (iii) that FARWIND-produced methanol (and offshore wind farms-produced methanol) could compete with gasoline on the EU transportation fuel market in the long term.


Energies ◽  
2018 ◽  
Vol 11 (10) ◽  
pp. 2728 ◽  
Author(s):  
Longfu Luo ◽  
Xiaofeng Zhang ◽  
Dongran Song ◽  
Weiyi Tang ◽  
Jian Yang ◽  
...  

As onshore wind energy has depleted, the utilization of offshore wind energy has gradually played an important role in globally meeting growing green energy demands. However, the cost of energy (COE) for offshore wind energy is very high compared to the onshore one. To minimize the COE, implementing optimal design of offshore turbines is an effective way, but the relevant studies are lacking. This study proposes a method to minimize the COE of offshore wind turbines, in which two design parameters, including the rated wind speed and rotor radius are optimally designed. Through this study, the relation among the COE and the two design parameters is explored. To this end, based on the power-coefficient power curve model, the annual energy production (AEP) model is designed as a function of the rated wind speed and the Weibull distribution parameters. On the other hand, the detailed cost model of offshore turbines developed by the National Renewable Energy Laboratory is formulated as a function of the rated wind speed and the rotor radius. Then, the COE is formulated as the ratio of the total cost and the AEP. Following that, an iterative method is proposed to search the minimal COE which corresponds to the optimal rated wind speed and rotor radius. Finally, the proposed method has been applied to the wind classes of USA, and some useful findings have been obtained.


Author(s):  
Isam Janajreh ◽  
Rana Qudaih ◽  
Ilham Talab ◽  
Zaki Al Nahari

Wind turbine technology has improved dramatically in the last two decades as demonstrated by their plummeting capital costs ($0.08/KW), the enhanced reliability, and the increased efficiency. Large-scale wind turbines and wind farms provided 94.1GW of electrical grid capacity in 2007, and are expected to reach 160 GW by 2010 according to WWEA. Wind energy is plentiful and sustainable energy source with an estimated potential capacity of 72 TW. In Denmark the inland and offshore implementation of wind energy generation adds 1/5 of their electrical grid capacity. In Germany, it is forecasted to attain 12.5% by early 2010. Offshore wind farms have lower ecological impact due to lack of land mortgage, easier transportation, and low perception of noise issue. In the gulf region, the generated power can fulfill the power needs of UAE’s islands, while the excess capacity can be channeled to the inland grids fulfilling the peak demand. In this work we will investigate the implementation of low-turning moment wind turbines in the UAE, suited for low wind speeds (∼3–5m/s) and that consists of two research components: (i) Collection of wind data, analysis, recommendation for implementation strategies, and using Masdar wind data to assess its characteristics and its fit for wind turbine implementation; (ii) Carry out flow analysis on a downwind, two-bladed, horizontal-axes wind turbine to investigate the flow lift, drag and wake characteristics on the tower blade interaction. The interaction is studied utilizing Arbitrary Lagrangian Eulerian method. Downwind turbines are self-aligned, pass up yaw mechanisms and its needed power, and have fewer moving parts that necessitate regular maintenance. These factors however play in favor of wind turbine that is subjected to low wind speed.


2021 ◽  
Vol 6 (5) ◽  
pp. 1191-1204
Author(s):  
Aurélien Babarit ◽  
Félix Gorintin ◽  
Pierrick de Belizal ◽  
Antoine Neau ◽  
Giovanni Bordogna ◽  
...  

Abstract. This paper deals with a new concept for the conversion of far-offshore wind energy into sustainable fuel. It relies on autonomous sailing energy ships and manned support tankers. Energy ships are wind-propelled ships that generate electricity using water turbines attached underneath their hull. Since energy ships are not grid-connected, they include onboard power-to-X plants for storage of the produced energy. In the present work, the energy vector X is methanol. In the first part of this study, an energy ship design was proposed, and its energy performance was assessed. In this second part, the aim is to update the energy and economic performance of such a system based on design progression. In collaboration with ocean engineering, marine renewable energy and wind-assisted propulsion experts, the energy ship design of the first part has been revised. Based on this new design, a complete FARWIND energy system is proposed, and its costs (CAPEX and OPEX) are estimated. Results of the models show (i) that this FARWIND system could produce approximately 70 000 t of methanol per annum (approximately 400 GWh per annum of chemical energy) at a cost in the range EUR 1.2 to 3.6/kg, (ii) that this cost may be comparable to that of methanol produced by offshore wind farms in the long term and (iii) that FARWIND-produced methanol (and methanol produced by offshore wind farms) could compete with gasoline on the EU transportation fuel market in the long term.


2020 ◽  
Author(s):  
Axel Kleidon ◽  
Lee Miller

<p>Offshore wind power is seen as a large renewable energy resource due to the high and continuous wind speeds over the ocean.However, as wind farms expand in scale, wind turbines increasingly remove kinetic energy from the atmospheric flow, reducing wind speeds and expected electricity yields.Here we show that this removal effect of large wind farms and the drop in yields can be estimated in a relatively simple way by considering the kinetic energy budget of the lower atmosphere, which we refer to as the KEBA approach.We first show that KEBA can reproduce the estimated, climatological yields of wind farms of different sizes and locations using previously published numerical model simulations with an explicit wind farm representation.<span>  </span>We then show the relevance of these reductions by evaluating the contribution of offshore wind energy in specific scenarios of Germany’s energy transition in the year 2050.Our estimates suggest that due to reduced wind speeds, mean capacity factors of wind farms are reduced to 33 - 39%, which is notably less than capacity factors above 50% that are commonly assumed in energy scenarios.This reduction is explained by KEBA by the depletion of the horizontal flow of kinetic energy by the wind farms and the low vertical renewal rate, which limits large-scale wind energy potentials to less than 1 W m<sup>-2</sup> of surface area.We conclude that wind speed reductions are likely to play a substantial role in the further expansion of offshore wind energy and need to be considered in the planning process.These reduced yields can be estimated by a comparatively simple approach based on budgeting the kinetic energy of the atmosphere surrounding the wind farms.</p>


Energies ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 1134
Author(s):  
Tobi Elusakin ◽  
Mahmood Shafiee ◽  
Tosin Adedipe ◽  
Fateme Dinmohammadi

With increasing deployment of offshore wind farms further from shore and in deeper waters, the efficient and effective planning of operation and maintenance (O&M) activities has received considerable attention from wind energy developers and operators in recent years. The O&M planning of offshore wind farms is a complicated task, as it depends on many factors such as asset degradation rates, availability of resources required to perform maintenance tasks (e.g., transport vessels, service crew, spare parts, and special tools) as well as the uncertainties associated with weather and climate variability. A brief review of the literature shows that a lot of research has been conducted on optimizing the O&M schedules for fixed-bottom offshore wind turbines; however, the literature for O&M planning of floating wind farms is too limited. This paper presents a stochastic Petri network (SPN) model for O&M planning of floating offshore wind turbines (FOWTs) and their support structure components, including floating platform, moorings and anchoring system. The proposed model incorporates all interrelationships between different factors influencing O&M planning of FOWTs, including deterioration and renewal process of components within the system. Relevant data such as failure rate, mean-time-to-failure (MTTF), degradation rate, etc. are collected from the literature as well as wind energy industry databases, and then the model is tested on an NREL 5 MW reference wind turbine system mounted on an OC3-Hywind spar buoy floating platform. The results indicate that our proposed model can significantly contribute to the reduction of O&M costs in the floating offshore wind sector.


Sign in / Sign up

Export Citation Format

Share Document