scholarly journals Application of the New IEC International Design Standard for Offshore Wind Turbines to a Reference Site in the Massachusetts Offshore Wind Energy Area

2020 ◽  
Vol 1452 ◽  
pp. 012038
Author(s):  
Samuel Roach ◽  
Se Myung Park ◽  
Evan Gaertner ◽  
James Manwell ◽  
Matthew Lackner
2021 ◽  
Vol 13 (5) ◽  
pp. 2862
Author(s):  
Amer Al-Hinai ◽  
Yassine Charabi ◽  
Seyed H. Aghay Kaboli

Despite the long shoreline of Oman, the wind energy industry is still confined to onshore due to the lack of knowledge about offshore wind potential. A spatial-temporal wind data analysis is performed in this research to find the locations in Oman’s territorial seas with the highest potential for offshore wind energy. Thus, wind data are statistically analyzed for assessing wind characteristics. Statistical analysis of wind data include the wind power density, and Weibull scale and shape factors. In addition, there is an estimation of the possible energy production and capacity factor by three commercial offshore wind turbines suitable for 80 up to a 110 m hub height. The findings show that offshore wind turbines can produce at least 1.34 times more energy than land-based and nearshore wind turbines. Additionally, offshore wind turbines generate more power in the Omani peak electricity demand during the summer. Thus, offshore wind turbines have great advantages over land-based wind turbines in Oman. Overall, this work provides guidance on the deployment and production of offshore wind energy in Oman. A thorough study using bankable wind data along with various logistical considerations would still be required to turn offshore wind potential into real wind farms in Oman.


Author(s):  
Abdollah A. Afjeh ◽  
◽  
Brett Andersen ◽  
Jin Woo Lee ◽  
Mahdi Norouzi ◽  
...  

Development of novel offshore wind turbine designs and technologies are necessary to reduce the cost of offshore wind energy since offshore wind turbines need to withstand ice and waves in addition to wind, a markedly different environment from their onshore counterparts. This paper focuses on major design challenges of offshore wind turbines and offers an advanced concept wind turbine that can significantly reduce the cost of offshore wind energy as an alternative to the current popular designs. The design consists of a two-blade, downwind rotor configuration fitted to a fixed bottom or floating foundation. Preliminary results indicate that cost savings of nearly 25% are possible compared with the conventional upwind wind turbine designs.


Energies ◽  
2018 ◽  
Vol 11 (10) ◽  
pp. 2728 ◽  
Author(s):  
Longfu Luo ◽  
Xiaofeng Zhang ◽  
Dongran Song ◽  
Weiyi Tang ◽  
Jian Yang ◽  
...  

As onshore wind energy has depleted, the utilization of offshore wind energy has gradually played an important role in globally meeting growing green energy demands. However, the cost of energy (COE) for offshore wind energy is very high compared to the onshore one. To minimize the COE, implementing optimal design of offshore turbines is an effective way, but the relevant studies are lacking. This study proposes a method to minimize the COE of offshore wind turbines, in which two design parameters, including the rated wind speed and rotor radius are optimally designed. Through this study, the relation among the COE and the two design parameters is explored. To this end, based on the power-coefficient power curve model, the annual energy production (AEP) model is designed as a function of the rated wind speed and the Weibull distribution parameters. On the other hand, the detailed cost model of offshore turbines developed by the National Renewable Energy Laboratory is formulated as a function of the rated wind speed and the rotor radius. Then, the COE is formulated as the ratio of the total cost and the AEP. Following that, an iterative method is proposed to search the minimal COE which corresponds to the optimal rated wind speed and rotor radius. Finally, the proposed method has been applied to the wind classes of USA, and some useful findings have been obtained.


Author(s):  
Dilara Gulcin Caglayan ◽  
Severin Ryberg ◽  
Heidi Heinrichs ◽  
Jochen Linßen ◽  
Detlef Stolten ◽  
...  

Renewable energy sources will play a central role in the sustainable energy systems of the future. Scenario analyses of such hypothesized energy systems require sound knowledge of the techno-economic potential of renewable energy technologies. Although there have been various studies concerning the potential of offshore wind energy, higher spatial resolution, as well as the future design concepts of offshore wind turbines, has not yet been addressed in sufficient detail. Here, we aim to overcome this gap by applying a high spatial resolution to the three main aspects of offshore wind potential analysis, namely ocean suitability, the simulation of wind turbines and cost estimation. A set of constraints is determined that reveal the available areas for turbine placement across Europe’s maritime boundaries. Then, turbine designs specific to each location are selected by identifying turbines with the cheapest levelized cost of electricity (LCOE), restricted to capacities, hub heights and rotor diameters of between 3-20 MW, 80-200 m and 80-280 m, respectively. Ocean eligibility and turbine design are then combined to distribute turbines across the available areas. Finally, LCOE trends are calculated from the individual turbine costs, as well as the corresponding capacity factor obtained by hourly simulation with wind speeds from 1980 to 2017. The results of cost-optimal turbine design reveal that the overall potential for offshore wind energy across Europe will constitute nearly 8.6 TW and 40.0 PWh at roughly 7 €ct kWh-1 average LCOE by 2050. Averaged design parameters at national level are provided in an appendix.


Author(s):  
Konstantinos Gryllias ◽  
Junyu Qi ◽  
Alexandre Mauricio ◽  
Chenyu Liu

Abstract The current pace of renewable energy development around the world is unprecedented, with offshore wind in particular proving to be an extremely valuable and reliable energy source. The global installed capacity of offshore wind turbines by the end of 2022 is expected to reach the 46.4 GW, among which 33.9 GW in Europe. Costs are critical for the future success of the offshore wind sector. The industry is pushing hard to make cost reductions to show that offshore wind is economically comparable to conventional fossil fuels. Efficiencies in Operations and Maintenance (O&M) offer potential to achieve significant cost savings as it accounts for around 20%–30% of overall offshore wind farm costs. One of the most critical and rather complex assembly of onshore, offshore and floating wind turbines is the gearbox. Gearboxes are designed to last till the end of the lifetime of the asset, according to the IEC 61400-4 standards. On the other hand, a recent study over approximately 350 offshore wind turbines indicate that gearboxes might have to be replaced as early as 6.5 years. Therefore sensing and condition monitoring systems for onshore, offshore and floating wind turbines are needed in order to obtain reliable information on the state and condition of different critical parts, focusing towards the detection and/or prediction of damage before it reaches a critical stage. The development and use of such technologies will allow companies to schedule actions at the right time, and thus will help reducing the costs of operation and maintenance, resulting in an increase of wind energy at a competitive price and thus strengthening productivity of the wind energy sector. At the academic level a plethora of methodologies have been proposed during the last decades for the analysis of vibration signatures focusing towards early and accurate fault detection with limited false alarms and missed detections. Among others, Envelope Analysis is one of the most important methodologies, where an envelope of the vibration signal is estimated, usually after filtering around a selected frequency band excited by impacts due to the faults. Different tools, such as Kurtogram, have been proposed in order to accurately select the optimum filter parameters (center frequency and bandwidth). Cyclostationary Analysis and corresponding methodologies, i.e. the Cyclic Spectral Correlation and the Cyclic Spectral Coherence, have been proved as powerful tools for condition monitoring. On the other hand the application, test and evaluation of such tools on general industrial cases is still rather limited. Therefore the main aim of this paper is the application and evaluation of advanced diagnostic techniques and diagnostic indicators, including the Enhanced Envelope Spectrum and the Spectral Flatness on real world vibration data collected from vibration sensors on gearboxes in multiple wind turbines over an extended period of time of nearly four years. The diagnostic indicators are compared with classical statistic time and frequency indicators, i.e. Kurtosis, Crest Factor etc. and their effectiveness is evaluated based on the successful detection of two failure events.


Author(s):  
Lorenz Haid ◽  
Gordon Stewart ◽  
Jason Jonkman ◽  
Amy Robertson ◽  
Matthew Lackner ◽  
...  

The design standard typically used for offshore wind system development, the International Electrotechnical Commission (IEC) 61400-3 fixed-bottom offshore design standard, explicitly states that “the design requirements specified in this standard are not necessarily sufficient to ensure the engineering integrity of floating offshore wind turbines” [1]. One major concern is the prescribed simulation length time of 10 minutes for a loads-analysis procedure, which is also typically used for land-based turbines. Because floating platforms have lower natural frequencies, which lead to fewer load cycles over a given period of time, and ocean waves have lower characteristic frequencies than wind turbulence, the 10-min simulation length recommended by the current standards for land-based and offshore turbines may be too short for combined wind and wave loading of floating offshore wind turbines (FOWTs). Therefore, the goal of this paper is to examine the appropriate length of a FOWT simulation — a fundamental question that needs to be answered to develop design requirements. To examine this issue, we performed a loads analysis of an example FOWT with varying simulation lengths, using FAST, the National Renewable Energy Laboratory’s (NREL’s) nonlinear aero-hydro-servo-elastic simulation tool. The offshore wind system used was the OC3-Hywind spar buoy, which was developed for use in the International Energy Agency (IEA) Offshore Code Comparison Collaborative (OC3) project, and supports NREL’s offshore 5-MW baseline turbine. Realistic metocean data from the National Oceanic and Atmospheric Administration (NOAA) and repeated periodic wind files were used to excite the structure. The results of the analysis clearly show that loads do not increase for longer simulations. In regard to fatigue, a sensitivity analysis shows that the procedure used for counting half cycles is more important than the simulation length itself. Based on these results, neither the simulation length nor the periodic wind files affect response statistics and loads for FOWTs (at least for the spar studied here); a result in contrast to the offshore oil and gas (O&G) industry, where running simulations of at least 3 hours in length is common practice.


Author(s):  
Germán Sedlacek ◽  
Alina Miehe ◽  
Ana Libreros ◽  
Yousef Heider

Offshore wind energy farms have gained much attention during the last years in Germany and all over the world. In the construction of offshore wind turbines, piled foundations have been mostly used so far. However, gravity base foundations represent a good alternative as they minimize the typical high risks of the offshore works, such as weather-dependent installation, operational safety, construction sequence and performance. The whole wind energy turbine is assembled onshore and promptly transported to the planned location. In the design of the gravity foundation under cyclic loading conditions, it is essential to avoid inadmissibly large reductions of the subsoil bearing capacity due to the excess pore-water pressure (loss of stability) and tilting of the foundation caused by the accumulation of settlements (loss of serviceability). This paper provides a description of the soil-mechanical behaviour of gravity base foundations and gives an account of the current available rules and standards for dimensioning foundations of this type. In this regard, a procedure for the geotechnical design of a gravity base foundation is laid out, where this work points out that the existing standards for designing gravity base foundations need to be further developed. Moreover, a brief summary of the results at a full-scale model test, according to the present state of testing and knowledge, are given.


2020 ◽  
Author(s):  
Axel Kleidon ◽  
Lee Miller

<p>Offshore wind power is seen as a large renewable energy resource due to the high and continuous wind speeds over the ocean.However, as wind farms expand in scale, wind turbines increasingly remove kinetic energy from the atmospheric flow, reducing wind speeds and expected electricity yields.Here we show that this removal effect of large wind farms and the drop in yields can be estimated in a relatively simple way by considering the kinetic energy budget of the lower atmosphere, which we refer to as the KEBA approach.We first show that KEBA can reproduce the estimated, climatological yields of wind farms of different sizes and locations using previously published numerical model simulations with an explicit wind farm representation.<span>  </span>We then show the relevance of these reductions by evaluating the contribution of offshore wind energy in specific scenarios of Germany’s energy transition in the year 2050.Our estimates suggest that due to reduced wind speeds, mean capacity factors of wind farms are reduced to 33 - 39%, which is notably less than capacity factors above 50% that are commonly assumed in energy scenarios.This reduction is explained by KEBA by the depletion of the horizontal flow of kinetic energy by the wind farms and the low vertical renewal rate, which limits large-scale wind energy potentials to less than 1 W m<sup>-2</sup> of surface area.We conclude that wind speed reductions are likely to play a substantial role in the further expansion of offshore wind energy and need to be considered in the planning process.These reduced yields can be estimated by a comparatively simple approach based on budgeting the kinetic energy of the atmosphere surrounding the wind farms.</p>


Sign in / Sign up

Export Citation Format

Share Document