scholarly journals A Framework for Optimizing Green Infrastructure Networks Based on Landscape Connectivity and Ecosystem Services

2021 ◽  
Vol 13 (18) ◽  
pp. 10053
Author(s):  
Xuemin Shi ◽  
Mingzhou Qin ◽  
Bin Li ◽  
Dan Zhang

Optimizing the layout of green infrastructure (GI) is an effective way to alleviate the fragmentation of urban landscapes, coordinate the relationship between urban development and urban ecosystem services, and ensure the sustainable development of cities. This study provides a new technical framework for optimizing GI networks based on a case study of Kaifeng, an exemplar of many ancient cities along the Yellow River in China. To do this, we used a morphological spatial pattern analysis (MSPA) methodology and combined it with Procedure for mAthematical aNalysis of lanDscape evOlution and equilibRium scenarios Assessment (PANDORA) model to determine the hubs of the GI network. Then we employed a least-cost path approach to simulate potential corridors linking the hubs. We further identify the key ‘pinch points’ of the GI network that need priority protection based on circuit theory. Altogether, this framework takes patches that have a high level of ecosystem services and are more important in maintaining overall connectivity as hubs, thereby improving the accuracy of hub identification. Moreover, it establishes a direct connection between GI construction and ecosystem services, and improves biodiversity conservation by optimizing the network structure of GI. The results of the case study show that this framework is suitable for GI planning and construction, and can provide effective technical support for the formulation of urban sustainable development strategies.

2022 ◽  
Author(s):  
Yang Liu ◽  
Ting-Ting Huang ◽  
Xi Zheng

AbstractAccelerated urbanization and population growth lead to the fragmentation of urban green space and loss of biodiversity. There are few studies on the integration of structural and functional connectivity to solve this problem. Our study aims to draw up a methodology to synthesize two methods of connectivity evaluation, accordingly, to construct an urban green infrastructure (UGI) network which is of great significance to maintain the stability of the urban ecosystem. Taking Beijing as a study area, we first used Morphological Spatial Pattern Analysis (MSPA) to identify the source patches, then combined with the graph theory-based landscape metrics to discuss the effect of different diffusion distances on the regional landscape connectivity and classify the importance level of the source patches. Finally, we used both least-cost path (LCP) and circuit theory to construct network and identify pinch areas in corridors for network optimization. The results show that (1) the landscape connectivity of the study area is obviously polarized. Source patches in mountain and hilly areas have good ecological bases and large areas, and the density of corridors is relatively high, which makes a large contribution to the overall landscape connectivity; Source patches in plain areas are severely fragmented, and there are only a small number of potential corridors connecting urban areas and suburban areas. (2) The UGI network is composed of 70 source patches and 148 potential corridors. The diffusion distance that is most beneficial to improve landscape connectivity is 20–25 km. (3) 6 pinch areas that are of great significance for improving the connectivity of the landscape present the coexistence of high migration resistance and large optimization potential, and urgently need to be restored first. This study provides a method to combine the structural and the functional analysis to construct a UGI network and formulate more scientifical protection strategies for planning departments.


2020 ◽  
Vol 2 (11) ◽  
Author(s):  
Erica Honeck ◽  
Arthur Sanguet ◽  
Martin A. Schlaepfer ◽  
Nicolas Wyler ◽  
Anthony Lehmann

AbstractNature forms interdependent networks in a landscape, which is key to the survival of species and the maintenance of genetic diversity. Nature provides crucial socio-economic benefits to people, but they are typically undervalued in political decisions. This has led to the concept of Green Infrastructure (GI), which defines an interlinked network of (semi-)natural areas with high ecological values for wildlife and people, to be conserved and managed in priority to preserve biodiversity and ecosystem services. This relatively new concept has been used in different contexts, but with widely diverging interpretations. There is no apparent consensus in the scientific literature on the methodology to map and implement GI. This paper serves as an informed primer for researchers that are new to GI mapping understand the key principles and terminology for the needs of their own case-study, and as a framework for more advance researchers willing to contribute to the formalization of the concept. Through a literature review of articles on creating GI networks, we summarized and evaluated commonly used methods to identify and map GI. We provided key insights for the assessment of diversity, ecosystem services and landscape connectivity, the three ‘pillars’ on which GI identification is based according to its definition. Based on this literature review, we propose 5 theoretical levels toward a more complex, reliable and integrative approach to identify GI networks. We then discuss the applications and limits of such method and point out future challenges for GI identification and implementation.


Land ◽  
2020 ◽  
Vol 9 (12) ◽  
pp. 530
Author(s):  
Monika Egerer ◽  
Elsa Anderson

Landscape connectivity is a critical component of dynamic processes that link the structure and function of networks at the landscape scale. In the Anthropocene, connectivity across a landscape-scale network is influenced not only by biophysical land use features, but also by characteristics and patterns of the social landscape. This is particularly apparent in urban landscapes, which are highly dynamic in land use and often in social composition. Thus, landscape connectivity, especially in cities, must be thought of in a social-ecological framework. This is relevant when considering ecosystem services—the benefits that people derive from ecological processes and properties. As relevant actors move through a connected landscape-scale network, particular services may “flow” better across space and time. For this special issue on dynamic landscape connectivity, we discuss the concept of social-ecological networks using urban landscapes as a focal system to highlight the importance of social-ecological connectivity to understand dynamic urban landscapes, particularly in regards to the provision of urban ecosystem services.


2019 ◽  
Vol 11 (18) ◽  
pp. 4943 ◽  
Author(s):  
Kunyuan Wanghe ◽  
Xinle Guo ◽  
Xiaofeng Luan ◽  
Kai Li

Green infrastructure is one of the key components that provides critical ecosystems services in urban areas, such as regulating services (temperature regulation, noise reduction, air purification), and cultural services (recreation, aesthetic benefits), but due to rapid urbanization, many environmental impacts associated with the decline of green space have emerged and are rarely been evaluated integrally and promptly. The Chinese government is building a new city as the sub-center of the capital in Tongzhou District, Beijing, China. A series of policies have been implemented to increase the size of green urban areas. To support this land-use decision-making process and achieve a sustainable development strategy, accurate assessments of green space are required. In the current study, using land-use data and environmental parameters, we assessed the urban green space in the case study area. The bio-energy and its fluxes, landscape connectivity, as well as related ecosystem services were estimated using a novel approach, the PANDORA model. These results show that (1) in the highly urbanized area, green space is decreasing in reaction to urbanization, and landscape fragmentation is ubiquitous; (2) the river ecology network is a critical part for ecosystem services and landscape connectivity; and (3) the alternative non-green patches to be changed to urban, urban patches which can improve landscape quality the most by being changed to green, and conservation priority patches for biodiversity purposes of urban green were explicitly identified. Conclusively, our results depict the spatial distribution, fluxes, and evolution of bio-energy, as well as the conservation prioritization of green space. Our methods can be applied by urban planners and ecologists, which can help decision-makers achieve a sustainable development strategy in these rapidly urbanizing areas worldwide.


2019 ◽  
Vol 136 ◽  
pp. 03003
Author(s):  
Liang Zhao

Urban green infrastructure (UGI) attracts much interest because they could provide urban ecosystem services (UES). Among all various methodologies, the UGI structure-based modelling is favored for advantages in physiological mechanisms. This work concerns on environmental services, including “air purification,” “microclimate regulation,” “noise reduction,” “carbon sequestration and storage,” and “rainwater retention.” A new assessment methodology based on UGI structure indicator was constructed with nine UGI model structures and quantitative values. With implemented in two urban parks in Shanghai, this methodology is speculated to be suitable for patch-level cases, and can make certain efforts to regions without sufficient data.


AMBIO ◽  
2014 ◽  
Vol 43 (4) ◽  
pp. 445-453 ◽  
Author(s):  
Erik Andersson ◽  
Stephan Barthel ◽  
Sara Borgström ◽  
Johan Colding ◽  
Thomas Elmqvist ◽  
...  

Author(s):  
Marise Barreiros Horta ◽  
Maria Inês Cabral ◽  
Iva Pires ◽  
Laura Salles Bachi ◽  
Ana Luz ◽  
...  

By integrating social, ecological, and economic perspectives, the assessment of ecosystem services (ES) provides valuable information for better targeting landscape planning and governance. This chapter summarizes different participatory approaches for assessing ES in urban areas of three countries. In Belo Horizonte (Brazil), a conceptual framework for the vacant lots ES assessment is presented as an attempt to integrate landscape, social, and political dimensions. In Leipzig (Germany), a combination of site surveys, interviews, and remote sensing provides a valuable data set that fostered a comparative study between two forms of urban gardening. In Lisbon (Portugal), the study is based on interviews that offer a social insight into the horticultural parks situation, which in turn demands a better dialogue with the municipality. In general, the studies demonstrate the potential benefits of utilizing the ES assessment approaches on urban landscapes, especially for better understanding the interactions between people and nature in urban sites.


2021 ◽  
pp. 247-262
Author(s):  
Vladimir Krivtsov ◽  
Steve Birkinshaw ◽  
Valerie Olive ◽  
Janeé Lomax ◽  
Derek Christie ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document