scholarly journals Taiwan’s Offshore Wind Energy Policy: From Policy Dilemma to Sustainable Development

2021 ◽  
Vol 13 (18) ◽  
pp. 10465
Author(s):  
Huey-Shian Chung

Taiwan’s offshore wind energy policy (OWE policy) is a response to sustainable development goals. Offshore wind energy has become one of the fastest growing renewable energies on Taiwan’s coastline, with the government’s full support for the promotion and implementation of the OWE policy. With the operation of Taiwan’s first wind farm in 2021, increasing controversies are specifically concerned with the distribution of social, economic, and environmental burdens and benefits resulting from the OWE policy. More offshore wind farms are forthcoming by 2025. However, little attention has been paid to policy dilemmas for many aspects relevant to sustainable development. Therefore, this paper conducts a policy analysis to construct policy-relevant information of the OWE policy and identifies policy dilemmas in relation to concerns about sustainable development. This paper presents policy recommendations on the design and decision-making processes for facilitating the smooth promotion and implementation of Taiwan’s OWE policy and future renewable energy policies.

2018 ◽  
Vol 38 (1) ◽  
pp. 27-34
Author(s):  
Leszek Dawid

AbstractAt the end of 2016 there were 84 wind farms under construction in 11 European countries. Investments in this sector are enormous. The average cost of a wind farm construction amounts to approx. 4 mln EUR per 1 MW of installed power. Offshore wind energy production also plays a significant role in the process of ensuring energy security in Europe, and in reduction of greenhouse gases. The objective of this paper is to present prospects of offshore wind energy farms development in the leading member states of the European Union as regards this problem. In this paper offshore wind farms in Germany and Denmark have been studied. In the paper the power of wind farms, the support systems as well as criteria related to location of wind farm offshore have been analysed. German and Danish sectors of offshore wind energy are strongly supported by respective governments. Both countries aim at yearly increase of wind energy share in total energy production. The research has been conducted based on the analysis of acts, regulations, the subject’s literature and information from websites.


2021 ◽  
Vol 55 (4) ◽  
pp. 72-87
Author(s):  
Travis Miles ◽  
Sarah Murphy ◽  
Josh Kohut ◽  
Sarah Borsetti ◽  
Daphne Munroe

Abstract The U.S. East Coast has 1.7 million acres of federal bottom under lease for the development of wind energy installations, with plans for more than 1,500 foundations to be placed. The scale of these wind farms has the potential to alter the unique and delicate oceanographic conditions along the expansive Atlantic continental shelf, a region characterized by a strong seasonal thermocline that overlies cold bottom water, known as the “Cold Pool.” Strong seasonal stratification traps cold (typically less than 10°C) water above the ocean bottom sustaining a boreal fauna that represents vast fisheries, including the most lucrative shellfish fisheries in the United States. This paper reviews the existing literature and research pertaining to the ways in which offshore wind farms may alter processes that establish, maintain, and degrade stratification associated with the Cold Pool through vertical mixing in this seasonally dynamic system. Changes in stratification could have important consequences in Cold Pool setup and degradation, processes fundamental to high fishery productivity of the region. The potential for these multiple wind energy arrays to alter oceanographic processes and the biological systems that rely on them is possible; however, a great deal of uncertainty remains about the nature and scale of these interactions. Research should be prioritized that identifies stratification thresholds of influence, below which turbines and wind farm arrays may alter oceanographic processes. These should be examined within context of spatial and seasonal dynamics of the Cold Pool and offshore wind lease areas to identify potential areas of further study.


2020 ◽  
Vol 12 (14) ◽  
pp. 5761 ◽  
Author(s):  
Chakib El Mokhi ◽  
Adnane Addaim

Wind energy is currently one of the fastest-growing renewable energy sources in the world. For this reason, research on methods to render wind farms more energy efficient is reasonable. The optimization of wind turbine positions within wind farms makes the exploitation of wind energy more efficient and the wind farms more competitive with other energy resources. The investment costs alone for substation and electrical infrastructure for offshore wind farms run around 15–30% of the total investment costs of the project, which are considered high. Optimizing the substation location can reduce these costs, which also minimizes the overall cable length within the wind farm. In parallel, optimizing the cable routing can provide an additional benefit by finding the optimal grid network routing. In this article, the authors show the procedure on how to create an optimized wind farm already in the design phase using metaheuristic algorithms. Besides the optimization of wind turbine positions for more energy efficiency, the optimization methods of the substation location and the cable routing for the collector system to avoid cable losses are also presented.


2021 ◽  
Author(s):  
Aurélien Babarit ◽  
Félix Gorintin ◽  
Pierrick de Belizal ◽  
Antoine Neau ◽  
Giovanni Bordogna ◽  
...  

Abstract. This paper deals with a new concept for the conversion of far-offshore wind energy into sustainable fuel. It relies on autonomous sailing energy ships and manned support tankers. Energy ships are wind-propelled ships that generate electricity using water turbines attached underneath their hull. Since energy ships are not grid-connected, they include onboard power-to-X plants for storage of the produced energy. In the present work, the energy vector X is methanol. In the first part of this study (Babarit et al., 2020), an energy ship design has been proposed and its energy performance has been assessed. In this second part, the aim is to estimate the energy and economic performance of such system. In collaboration with ocean engineering, marine renewable energy and wind-assisted propulsion’s experts, the energy ship design of the first part has been revised and updated. Based on this new design, a complete FARWIND energy system is proposed, and its costs (CAPEX and OPEX) are estimated. Results of the models show (i) that this FARWIND system could produce approximately 70,000 tonnes of methanol per annum (approximately 400 GWh per annum of chemical energy) at a cost in the range 1.2 to 3.6 €/kg, (ii) that this cost may be comparable to that of methanol produced by offshore wind farms in the long term, and (iii) that FARWIND-produced methanol (and offshore wind farms-produced methanol) could compete with gasoline on the EU transportation fuel market in the long term.


2017 ◽  
Vol 19 (01) ◽  
pp. 1750005 ◽  
Author(s):  
Jens Lüdeke

Aiming towards good practice in the planning and approval of offshore wind farms suggestions are provided for the amendment of environmental impact assessment (EIA), an effective marine spatial planning and the establishment of marine compensation measure. The investigation is focused on the situation in Germany as a frontrunner in ecological research on offshore wind energy. After 10 years of research in Germany, it is timely to offer a synopsis of the results especially regarding the successful investigations of mitigation measures. The results are based on published data collected in Germany over the last 10 years, as well as international research. The outcomes of the research were validated by interviewing experts using the Delphi method. Key findings for good practice in impact assessment, mitigation and compensation: 1. EIAs should focus on decision-relevant subjects of protection (i.e. specific bird species and harbour porpoises). 2. There is a strong necessity for thresholds for the approval process. 3. Exclusion of OWFs in hotspots of sensitive species. 4. Application of state-of-the-art mitigation measures particularly against underwater noise to avoid damages of the hearing of porpoises. 5. The introduction of marine compensation measures is strongly suggested.


2021 ◽  
Vol 6 (5) ◽  
pp. 1191-1204
Author(s):  
Aurélien Babarit ◽  
Félix Gorintin ◽  
Pierrick de Belizal ◽  
Antoine Neau ◽  
Giovanni Bordogna ◽  
...  

Abstract. This paper deals with a new concept for the conversion of far-offshore wind energy into sustainable fuel. It relies on autonomous sailing energy ships and manned support tankers. Energy ships are wind-propelled ships that generate electricity using water turbines attached underneath their hull. Since energy ships are not grid-connected, they include onboard power-to-X plants for storage of the produced energy. In the present work, the energy vector X is methanol. In the first part of this study, an energy ship design was proposed, and its energy performance was assessed. In this second part, the aim is to update the energy and economic performance of such a system based on design progression. In collaboration with ocean engineering, marine renewable energy and wind-assisted propulsion experts, the energy ship design of the first part has been revised. Based on this new design, a complete FARWIND energy system is proposed, and its costs (CAPEX and OPEX) are estimated. Results of the models show (i) that this FARWIND system could produce approximately 70 000 t of methanol per annum (approximately 400 GWh per annum of chemical energy) at a cost in the range EUR 1.2 to 3.6/kg, (ii) that this cost may be comparable to that of methanol produced by offshore wind farms in the long term and (iii) that FARWIND-produced methanol (and methanol produced by offshore wind farms) could compete with gasoline on the EU transportation fuel market in the long term.


2020 ◽  
Vol 8 (2) ◽  
pp. 120
Author(s):  
María Dolores Esteban ◽  
José-Santos López-Gutiérrez ◽  
Vicente Negro

In 2018, we were approached by the editorial team of the Journal of Marine Science and Engineering (MDPI editorial) to act as guest editors of a Special Issue related to offshore wind energy [...]


2018 ◽  
Vol 3 (2) ◽  
pp. 573-588 ◽  
Author(s):  
Tobias Ahsbahs ◽  
Merete Badger ◽  
Patrick Volker ◽  
Kurt S. Hansen ◽  
Charlotte B. Hasager

Abstract. Rapid growth in the offshore wind energy sector means more offshore wind farms are placed closer to each other and in the lee of large land masses. Synthetic aperture radar (SAR) offers maps of the wind speed offshore with high resolution over large areas. These can be used to detect horizontal wind speed gradients close to shore and wind farm wake effects. SAR observations have become much more available with the free and open-access data from European satellite missions through Copernicus. Examples of applications and tools for using large archives of SAR wind maps to aid offshore site assessment are few. The Anholt wind farm operated by the utility company Ørsted is located in coastal waters and experiences strong spatial variations in the mean wind speed. Wind speeds derived from the Supervisory Control And Data Acquisition (SCADA) system are available at the turbine locations for comparison with winds retrieved from SAR. The correlation is good, both for free-stream and waked conditions. Spatial wind speed variations along the rows of wind turbines derived from SAR wind maps prior to the wind farm construction agree well with information gathered by the SCADA system and a numerical weather prediction model. Wind farm wakes are detected by comparisons between images before and after the wind farm construction. SAR wind maps clearly show wakes for long and constant fetches but the wake effect is less pronounced for short and varying fetches. Our results suggest that SAR wind maps can support offshore wind energy site assessment by introducing observations in the early phases of wind farm projects.


2020 ◽  
Vol 184 ◽  
pp. 01094
Author(s):  
C Lavanya ◽  
Nandyala Darga Kumar

Wind energy is the renewable sources of energy and it is used to generate electricity. The wind farms can be constructed on land and offshore where higher wind speeds are prevailing. Most offshore wind farms employ fixed-foundation wind turbines in relatively shallow water. In deep waters floating wind turbines have gained popularity and are recent development. This paper discusses the various types of foundations which are in practice for use in wind turbine towers installed on land and offshore. The applicability of foundations based on depth of seabed and distance of wind farm from the shore are discussed. Also, discussed the improvement methods of weak or soft soils for the foundations of wind turbine towers.


Sign in / Sign up

Export Citation Format

Share Document