scholarly journals Standing Crop Biomass and Carbon Content of Mangrove Avicennia marina (Forssk.) Vierh. along the Red Sea Coast of Saudi Arabia

2021 ◽  
Vol 13 (24) ◽  
pp. 13996
Author(s):  
Kamal H. Shaltout ◽  
Mohamed T. Ahmed ◽  
Sulaiman A. Alrumman ◽  
Dalia A. Ahmed ◽  
Ebrahem M. Eid

A number of Avicennia marina mangrove forests exist along the 1134 km stretch of the Saudi Red Sea coast. Three areas, one in each of the north, centre, and south of the coast, were selected for this investigation into the relationship between total biomass (above-ground, AGB, and below-ground, BGB), and biomass carbon stocks of A. marina, along the nutrient availability (combined with a salinity gradient). To estimate the total biomass stock, this research employed equations formulated through a regression approach. Various population characteristics (tree crown diameter, height, and density) and measurements of carbon (C) in the trees were captured, and other measurements were gathered to represent the environmental properties: electrical conductivity (EC), total dissolved solids (TDS), and total phosphorus (TP) and total nitrogen (TN) levels. With this data from the 21 stands and 7 sites of A. marina covered by the three locations chosen along the coast, it was concluded that a discernible influence is exerted by the concentrations of TP and TN in the sea water and sediments over the population characteristics of this plant. The resulting estimates also demonstrated a steady increase in total biomass and total biomass carbon storage from the mangroves in the north toward the south, with values changing overall from 197.9 to 1188.2 Mg DM ha−1 and from 87.6 to 412.5 Mg C ha−1 respectively. This illustrates that the biomasses held by the southern mangroves are 6 times (total) and 4.7 times (total carbon storage) higher than those in the north.

Author(s):  
K.K. Vikrant ◽  
D.S. Chauhan ◽  
R.H. Rizvi

Climate change is one of the impending problems that have affected the productivity of agroecosystems which calls for urgent action. Carbon sequestration through agroforestry along altitude in mountainous regions is one of the options to contribute to global climate change mitigation. Three altitudes viz. lower (286-1200m), middle (1200-2000m), and upper (2000-2800m) have been selected in Tehri district. Ten Quadrates (10m × 10 m) were randomly selected from each altitude in agrisilviculture system. At every sampling point, one composite soil sample was taken at 30 cm soil depth for soil organic carbon analysis. For the purpose of woody biomass, Non destructive method and for crop biomass assessment destructive method was employed. Finally, aboveground biomass (AGB), belowground biomass carbon (BGB), Total tree Biomass (TTB), Crop biomass (CB), Total Biomass (TB), Total biomass carbon (TBC), soil organic carbon (SOC), and total carbon stock (TC) status were estimated and variables were compared using one-way analysis of variance (ANOVA).The result indicated that AGB, BGB, TTB, CB , TB, TBC, SOC, and TC varied significantly (p < 0.05) across the altitudes. Results showed that total carbon stock followed the order upper altitude ˃ middle altitudes ˃ lower altitude. The upper altitude (2000-2800 m) AGB, BGB,TTB, TBC,SOC, and TC stock was estimated as 2.11 Mg ha-1 , 0.52 Mg ha-1, 2.63 Mg ha-1, 2.633 Mg ha-1, 1.18 Mg ha-1 , 26.53 Mg ha-1, 38.48 Mg ha-1 respectively, and significantly higher than the other altitudes. It was concluded that agrisilviculture system hold a high potential for carbon storage at temperate zones. Quercus lucotrichophora, Grewia oppositifolia and Melia azadirach contributed maximum carbon storage which may greatly contribute to the climate resilient green economy strategy and their conservation should be promoted.


2019 ◽  
Vol 23 (3) ◽  
pp. 103-116
Author(s):  
Mahmoud H. Ahmed ◽  
Yasser Hussein ◽  
Ahmed Askora ◽  
Sameh B. El Kafrawy ◽  
Radwa El-Basheer

Sign in / Sign up

Export Citation Format

Share Document