scholarly journals The RothC Model to Complement Life Cycle Analyses: A Case Study of an Italian Olive Grove

2022 ◽  
Vol 14 (1) ◽  
pp. 569
Author(s):  
Valentina Fantin ◽  
Alessandro Buscaroli ◽  
Patrizia Buttol ◽  
Elisa Novelli ◽  
Cristian Soldati ◽  
...  

Soil organic carbon (SOC) plays a fundamental role in soil health, and its storage in soil is an important element to mitigate climate change. How to include this factor in Life Cycle Assessment studies has been the object of several papers and is still under discussion. SOC storage has been proposed as an additional environmental information in some applications of the Product Environmental Footprint (PEF). In the framework of wider activity aimed at producing the PEF of olive oil, the RothC model was applied to an olive cultivation located in Lazio region (Italy) to calculate the SOC storage and assess four scenarios representing different agricultural practices. RothC applicability, possible use of its results for improving product environmental performance, and relevance of SOC storage in terms of CO2eq compared to greenhouse gas emissions of the life-cycle of olive oil are discussed in this paper. According to the results, in all scenarios, the contribution in terms of CO2eq associated with SOC storage is remarkable compared to the total greenhouse gas emissions of the olive oil life-cycle. It is the opinion of the authors that the calculation of the SOC balance allows a more proper evaluation of the agricultural products contribution to climate change, and that the indications of the scenarios analysis are useful to enhance the environmental performance of these products. The downside is that the application of RothC requires additional data collection and expertise if compared to the execution of PEF studies.

2019 ◽  
Vol 75 (3) ◽  
pp. 21-32
Author(s):  
Natalia Vasylieva

Greenhouse gas emission is a global ecological challenge since it affects climate change and complicates providing food security. Each country ought to care about mitigating Greenhouse gas emissions including CH4 and N2O originated from agriculture. In this context, first, the performed research focused on Ukrainian ranking among the world Greenhouse gas emitters offering a multi-criteria evaluation of total Greenhouse gas quantities in CO2 equivalent, those ones per capita and per km2 of countries’ land territories. These indictors were also applied to visual comparing involvement of Ukrainian economy and its agriculture in the international Greenhouse gas emissions. Second, to explore agricultural Greenhouse gas emission at the domestic level we studied regional contributions by basic source categories such as enteric fermentation, manure management, and synthetic fertilizers. The proposed horizontal and vertical analyses allow clarifying regional management priorities in reducing Greenhouse gas emissions. Third, for this purpose the conducted investigation specified the EU Member States which match Ukrainian condition by shares of Greenhouse gas emissions and outputs in animal and crop sectors. The found patterns will be the most reliable vectors of adopting effective agricultural practices beneficial for the environment protection and mitigating influence over climate change.


Energy ◽  
2014 ◽  
Vol 66 ◽  
pp. 139-149 ◽  
Author(s):  
Mohammad Ali Rajaeifar ◽  
Asadolah Akram ◽  
Barat Ghobadian ◽  
Shahin Rafiee ◽  
Mohammad Davoud Heidari

2018 ◽  
Author(s):  
Angel D. Ramirez ◽  
Danilo Arcentales ◽  
Andrea Boero

Climate change is a serious threat to sustainability. Anthropogenic climate change is due to the accumulation of greenhouse gases (GHG) in the atmosphere beyond natural levels. Anthropogenic GHG emissions are mostly associated with carbon-dioxide (CO2) originated in the combustion of fossil fuels used for heat, power, and transportation. Globally, transportation contributes to 14% of the global GHG emissions. The transport sector is one of the main contributors to the greenhouse gas emissions of Ecuador. In Guayaquil, the road mass transportation system comprises regular buses and the bus rapid transit (BRT) system. Electricity in Ecuador is mostly derived from hydropower, hence incurs relatively low GHG emissions along its life cycle. Therefore, electrification of transport has been seen as an opportunity for mitigation of GHG emissions. In this study, the effect of partial replacement of the bus rapid system fleet is investigated. Feeders have been chosen as the replacement target in five different scenarios. GHG emissions from diesel-based feeders have been calculated using the GREET Fleet Footprint Calculator tool. The GHG emissions associated with the electricity used for transportation is calculated using the life cycle inventory of the electricity generation system of Ecuador. Three energy mix scenarios are used for this purpose. The 2012 mix which had 61% hydropower; the mix of 85% hydropower and the marginal electricity scenario, which supposed the extreme case when the new demand for electricity occurs during peak demand periods. Results indicate that mitigation of GHG emissions is possible for almost all scenarios of percentage fleet replacement and all mix scenarios. Electric buses efficiency and the carbon intensity of the electricity mix are critical for GHG mitigation.


Robotics ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 33
Author(s):  
Florian Stuhlenmiller ◽  
Steffi Weyand ◽  
Jens Jungblut ◽  
Liselotte Schebek ◽  
Debora Clever ◽  
...  

Modern industry benefits from the automation capabilities and flexibility of robots. Consequently, the performance depends on the individual task, robot and trajectory, while application periods of several years lead to a significant impact of the use phase on the resource efficiency. In this work, simulation models predicting a robot’s energy consumption are extended by an estimation of the reliability, enabling the consideration of maintenance to enhance the assessment of the application’s life cycle costs. Furthermore, a life cycle assessment yields the greenhouse gas emissions for the individual application. Potential benefits of the combination of motion simulation and cost analysis are highlighted by the application to an exemplary system. For the selected application, the consumed energy has a distinct impact on greenhouse gas emissions, while acquisition costs govern life cycle costs. Low cycle times result in reduced costs per workpiece, however, for short cycle times and higher payloads, the probability of required spare parts distinctly increases for two critical robotic joints. Hence, the analysis of energy consumption and reliability, in combination with maintenance, life cycle costing and life cycle assessment, can provide additional information to improve the resource efficiency.


2013 ◽  
Vol 19 (1) ◽  
pp. 69-78 ◽  
Author(s):  
S. Richard O. Williams ◽  
Peter D. Fisher ◽  
Tony Berrisford ◽  
Peter J. Moate ◽  
Keith Reynard

Sign in / Sign up

Export Citation Format

Share Document