scholarly journals Generating Functions for Orthogonal Polynomials of A2, C2 and G2

Symmetry ◽  
2018 ◽  
Vol 10 (8) ◽  
pp. 354 ◽  
Author(s):  
Tomasz Czyżycki ◽  
Jiří Hrivnák ◽  
Jiří Patera

The generating functions of fourteen families of generalized Chebyshev polynomials related to rank two Lie algebras A 2 , C 2 and G 2 are explicitly developed. There exist two classes of the orthogonal polynomials corresponding to the symmetric and antisymmetric orbit functions of each rank two algebra. The Lie algebras G 2 and C 2 admit two additional polynomial collections arising from their hybrid character functions. The admissible shift of the weight lattice permits the construction of a further four shifted polynomial classes of C 2 and directly generalizes formation of the classical univariate Chebyshev polynomials of the third and fourth kinds. Explicit evaluating formulas for each polynomial family are derived and linked to the incomplete exponential Bell polynomials.

Symmetry ◽  
2018 ◽  
Vol 10 (11) ◽  
pp. 617 ◽  
Author(s):  
Dmitry Dolgy ◽  
Dae Kim ◽  
Taekyun Kim ◽  
Jongkyum Kwon

This paper treats the connection problem of expressing sums of finite products of Chebyshev polynomials of the third and fourth kinds in terms of five classical orthogonal polynomials. In fact, by carrying out explicit computations each of them are expressed as linear combinations of Hermite, generalized Laguerre, Legendre, Gegenbauer, and Jacobi polynomials which involve some terminating hypergeometric functions F 0 2 , F 1 2 , and F 2 3 .


Author(s):  
Dmitry Victorovich Dolgy ◽  
Dae San Kim ◽  
Taekyun Kim ◽  
Jongkyum Kwon

This paper treats the connection problem of expressing sums of finite products of Chebyshev polynomials of the third and fourth kinds in terms of five classical orthogonal polynomials. In fact, by carrying out explicit computations each of them are expressed as linear combinations of Hermite, generalized Laguerre, Legendre, Gegenbauer, and Jacobi polynomials which involve some terminating hypergeometric functions ${}_2 F_0, {}_2 F_1$, and ${}_3 F_2$.


2016 ◽  
Vol 100 (549) ◽  
pp. 450-459 ◽  
Author(s):  
Jonny Griffiths

There are many families of polynomials in mathematics, and they often occur naturally in pairs. The Fibonacci polynomials and the Lucas polynomials, for example, are generated by the same recurrence relation but with different starting values, and there are many identities that link the two families [1]. The same is true for the Chebyshev polynomials of the first and second kinds, Tn (x) and Un (x) [2], respectively. There are two further polynomial families that are less well-known, the Chebyshev polynomials of the third and fourth kinds, Vn (x) and Wn (x) [3], respectively. Each of the four kinds is an example of an orthogonal polynomial family Pn (x), where for some appropriate weight function W (x), whenever n ≠ m. The families Tn (x) and Un (x) in particular are ubiquitous in their mathematical uses, in approximation theory, in differential equations, and in solving the Pell equation, to name but three. There are also many connections between Tn (x), Un (x), Vn (x) and Wn (x), some of which are explored here, and some of which we hope are new.


Author(s):  
Peter Mann

This chapter discusses canonical transformations and gauge transformations and is divided into three sections. In the first section, canonical coordinate transformations are introduced to the reader through generating functions as the extension of point transformations used in Lagrangian mechanics, with the harmonic oscillator being used as an example of a canonical transformation. In the second section, gauge theory is discussed in the canonical framework and compared to the Lagrangian case. Action-angle variables, direct conditions, symplectomorphisms, holomorphic variables, integrable systems and first integrals are examined. The third section looks at infinitesimal canonical transformations resulting from functions on phase space. Ostrogradsky equations in the canonical setting are also detailed.


Author(s):  
Bernhard Heim ◽  
Markus Neuhauser

AbstractIn this paper we investigate growth properties and the zero distribution of polynomials attached to arithmetic functions g and h, where g is normalized, of moderate growth, and $$0<h(n) \le h(n+1)$$ 0 < h ( n ) ≤ h ( n + 1 ) . We put $$P_0^{g,h}(x)=1$$ P 0 g , h ( x ) = 1 and $$\begin{aligned} P_n^{g,h}(x) := \frac{x}{h(n)} \sum _{k=1}^{n} g(k) \, P_{n-k}^{g,h}(x). \end{aligned}$$ P n g , h ( x ) : = x h ( n ) ∑ k = 1 n g ( k ) P n - k g , h ( x ) . As an application we obtain the best known result on the domain of the non-vanishing of the Fourier coefficients of powers of the Dedekind $$\eta $$ η -function. Here, g is the sum of divisors and h the identity function. Kostant’s result on the representation of simple complex Lie algebras and Han’s results on the Nekrasov–Okounkov hook length formula are extended. The polynomials are related to reciprocals of Eisenstein series, Klein’s j-invariant, and Chebyshev polynomials of the second kind.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Waleed M. Abd-Elhameed ◽  
Youssri H. Youssri

AbstractThe principal aim of the current article is to establish new formulas of Chebyshev polynomials of the sixth-kind. Two different approaches are followed to derive new connection formulas between these polynomials and some other orthogonal polynomials. The connection coefficients are expressed in terms of terminating hypergeometric functions of certain arguments; however, they can be reduced in some cases. New moment formulas of the sixth-kind Chebyshev polynomials are also established, and in virtue of such formulas, linearization formulas of these polynomials are developed.


2021 ◽  
Vol 21 (2) ◽  
pp. 461-478
Author(s):  
HIND MERZOUK ◽  
ALI BOUSSAYOUD ◽  
MOURAD CHELGHAM

In this paper, we will recover the new generating functions of some products of Tribonacci Lucas numbers and orthogonal polynomials. The technic used her is based on the theory of the so called symmetric functions.


2020 ◽  
Vol 12 (2) ◽  
pp. 280-286
Author(s):  
Carlos M. da Fonseca

AbstractIn this note, we recall several connections between the determinant of some tridiagonal matrices and the orthogonal polynomials allowing the relation between Chebyshev polynomials of second kind and Fibonacci numbers. With basic transformations, we are able to recover some recent results on this matter, bringing them into one place.


Sign in / Sign up

Export Citation Format

Share Document