Poisson Brackets & Angular Momentum

Author(s):  
Peter Mann

This chapter discusses canonical transformations and gauge transformations and is divided into three sections. In the first section, canonical coordinate transformations are introduced to the reader through generating functions as the extension of point transformations used in Lagrangian mechanics, with the harmonic oscillator being used as an example of a canonical transformation. In the second section, gauge theory is discussed in the canonical framework and compared to the Lagrangian case. Action-angle variables, direct conditions, symplectomorphisms, holomorphic variables, integrable systems and first integrals are examined. The third section looks at infinitesimal canonical transformations resulting from functions on phase space. Ostrogradsky equations in the canonical setting are also detailed.

1987 ◽  
Vol 42 (4) ◽  
pp. 333-340 ◽  
Author(s):  
B. Bruhn

This paper considers various aspects of the canonical coordinate transformations in a complex phase space. The main result is given by two theorems which describe two special families of mappings between integrable Hamiltonian systems. The generating function of these transformations is determined by the entropy and a second arbitrary function which we take to be the energy function. For simple integrable systems an algebraic treatment based on the group properties of the canonical transformations is given to calculate the eigenvalue spectrum of the energy.


2008 ◽  
Vol 17 (03) ◽  
pp. 435-491 ◽  
Author(s):  
JÜRGEN STRUCKMEIER ◽  
ANDREAS REDELBACH

A consistent, local coordinate formulation of covariant Hamiltonian field theory is presented. Whereas the covariant canonical field equations are equivalent to the Euler–Lagrange field equations, the covariant canonical transformation theory offers more general means for defining mappings that preserve the form of the field equations than the usual Lagrangian description. It is proven that Poisson brackets, Lagrange brackets, and canonical 2-forms exist that are invariant under canonical transformations of the fields. The technique to derive transformation rules for the fields from generating functions is demonstrated by means of various examples. In particular, it is shown that the infinitesimal canonical transformation furnishes the most general form of Noether's theorem. Furthermore, we specify the generating function of an infinitesimal space-time step that conforms to the field equations.


2009 ◽  
Vol 24 (10) ◽  
pp. 725-732 ◽  
Author(s):  
J. M. PONS ◽  
D. C. SALISBURY ◽  
K. A. SUNDERMEYER

It is well known that in a generally covariant gravitational theory the choice of spacetime scalars as coordinates yields phase-space observables (or "invariants"). However, their relation to the symmetry group of diffeomorphism transformations has remained obscure. In a symmetry-inspired approach we construct invariants out of canonically induced active gauge transformations. These invariants may be interpreted as the full set of dynamical variables evaluated in the intrinsic coordinate system. The functional invariants can explicitly be written as a Taylor expansion in the coordinates of any observer, and the coefficients have a physical and geometrical interpretation. Surprisingly, all invariants can be obtained as limits of a family of canonical transformations. This permits a short (again geometric) proof that all invariants, including the lapse and shift, satisfy Poisson brackets that are equal to the invariants of their corresponding Dirac brackets.


Author(s):  
Peter Mann

This chapter discusses point transformations in Lagrangian mechanics. Sometimes, when solving problems, it is useful to change coordinates in velocity phase space to better suit and simplify the system at hand; this is a requirement of any physical theory. This change is often motivated by some experimentally observed physicality of the system or may highlight new conserved quantities that might have been overlooked using the old description. In the Newtonian formalism, it was a bit of a hassle to change coordinates and the equations of motion will look quite different. In this chapter, point transformations in Lagrangian mechanics are developed and the Euler–Lagrange equation is found to be covariant. The chapter discusses coordinate transformations, parametrisation invariance and the Jacobian of the transform. Re-parametrisations are also included.


Author(s):  
Jennifer Coopersmith

Hamilton’s genius was to understand what were the true variables of mechanics (the “p − q,” conjugate coordinates, or canonical variables), and this led to Hamilton’s Mechanics which could obtain qualitative answers to a wider ranger of problems than Lagrangian Mechanics. It is explained how Hamilton’s canonical equations arise, why the Hamiltonian is the “central conception of all modern theory” (quote of Schrödinger’s), what the “p − q” variables are, and what phase space is. It is also explained how the famous conservation theorems arise (for energy, linear momentum, and angular momentum), and the connection with symmetry. The Hamilton-Jacobi Equation is derived using infinitesimal canonical transformations (ICTs), and predicts wavefronts of “common action” spreading out in (configuration) space. An analogy can be made with geometrical optics and Huygen’s Principle for the spreading out of light waves. It is shown how Hamilton’s Mechanics can lead into quantum mechanics.


Open Physics ◽  
2008 ◽  
Vol 6 (4) ◽  
Author(s):  
Ion Vancea

AbstractWe generalize previous works on the Dirac eigenvalues as dynamical variables of Euclidean gravity and N =1 D = 4 supergravity to on-shell N = 2 D = 4 Euclidean supergravity. The covariant phase space of the theory is defined as the space of the solutions of the equations of motion modulo the on-shell gauge transformations. In this space we define the Poisson brackets and compute their value for the Dirac eigenvalues.


1992 ◽  
Vol 114 (1) ◽  
pp. 35-41 ◽  
Author(s):  
C. R. Mischke

This is the second paper in a series relating to stochastic methods in mechanical design. The first is entitled, “Some Property Data and Corresponding Weibull Parameters for Stochastic Mechanical Design,” and the third, “Some Stochastic Mechanical Design Applications.” When data are sparse, many investigators prefer employing coordinate transformations to rectify the data string, and a least-square regression to seek the best fit. Such an approach introduces some bias, which the method presented here is intended to reduce. With mass-produced products, extensive testing can be carried out and prototypes built and evaluated. When production is small, material testing may be limited to simple tension tests or perhaps none at all. How should a designer proceed in order to achieve a reliability goal or to assess a design to see if the goal has been realized? The purpose of this paper is to show how sparse strength data can be reduced to distributional parameters with less bias and how such information can be used when designing to a reliability goal.


2015 ◽  
Vol 30 (35) ◽  
pp. 1550211 ◽  
Author(s):  
Paul D. Stack ◽  
Robert Delbourgo

By attaching three anticommuting Lorentz scalar (color) property coordinates to space–time, with an appropriate extended metric, we unify gravity with chromodynamics: gauge transformations then just correspond to coordinate transformations in the enlarged space–time-property space.


Symmetry ◽  
2018 ◽  
Vol 10 (8) ◽  
pp. 354 ◽  
Author(s):  
Tomasz Czyżycki ◽  
Jiří Hrivnák ◽  
Jiří Patera

The generating functions of fourteen families of generalized Chebyshev polynomials related to rank two Lie algebras A 2 , C 2 and G 2 are explicitly developed. There exist two classes of the orthogonal polynomials corresponding to the symmetric and antisymmetric orbit functions of each rank two algebra. The Lie algebras G 2 and C 2 admit two additional polynomial collections arising from their hybrid character functions. The admissible shift of the weight lattice permits the construction of a further four shifted polynomial classes of C 2 and directly generalizes formation of the classical univariate Chebyshev polynomials of the third and fourth kinds. Explicit evaluating formulas for each polynomial family are derived and linked to the incomplete exponential Bell polynomials.


Sign in / Sign up

Export Citation Format

Share Document