scholarly journals Symmetric Magnetic Anomaly Objects’ Orientation Recognition Based on Local Binary Pattern and Support Vector Machine

Symmetry ◽  
2019 ◽  
Vol 11 (1) ◽  
pp. 97 ◽  
Author(s):  
Jianyong Zheng ◽  
Hongbo Fan ◽  
Zhining Li ◽  
Qi Zhang

In order to identify the orientation or recognize the attitude of small symmetric magnetic anomaly objects at shallow depth, we propose a method of extracting local binary pattern (LBP) features from denoised magnetic anomaly signals and classifying symmetric magnetic objects that have different orientations based on support vector machine (SVM). First, nine component signals, such as magnetic gradient tensor matrix, total magnetic intensity (TMI), and so forth, are calculated from the original signal detected by the flux gate sensors. The nine component signals are processed by discrete wavelet transform (DWT), which aims to reduce noise and make the signal’s features clear. Then we extract LBP texture features from the denoised nine component signals. From the simulation analysis, we can conclude that the LBP texture features of the nine component signals have good interclass discrimination and intraclass aggregation, which can be used for pattern recognition. Finally, the LBP texture features are constructed into feature vectors. The orientations of symmetric ferromagnetic objects underground are identified by SVM based on the feature vectors. Through experiments, we can conclude that the orientation recognition accuracy rate reaches 90%. This suggests that we can obtain the details of magnetic anomalies through our method.

Author(s):  
Ajit Singh ◽  
Chander Kant

Interest in facial recognition hypotheses and algorithms has grown steadily over the last few decades. Video monitoring, criminal identification, building access control, and unmanned and autonomous vehicles are only a few examples of concrete applications that are becoming increasingly attractive to industry. Various techniques are being developed, including local, holistic, and hybrid approaches, which use only a few face image characteristics or the entire facial features to provide a face image description. Many methods have good results, if there are sufficiently representative training samples per person, in the face recognition system. Facial part finding and extraction show the utmost vital role in face and age recognition. In this research work a new algorithm is proposed for Face and Age Recognition (FAR) by using Discrete Wavelet Transform (DWT), Radial Basis Function Support Vector Machine (RBF-SVM) classifier, and Rotational Local Binary Pattern (RLBP). RLBP is utilized for the selection and extraction of features from the face image. In this algorithm, extract the face component like Nose, Mouth, Left and Right eye. In the preprocessing stage median filter is used to remove noises from the face image. By using this, there is an improvement in the feature extraction procedure. In pattern recognition, a basic errand is finding a picture from the picture parts. For the implementation of results FG-NET ((Face and Gesture Recognition Network) and AT&T datasets are used. The detection rate of face recognition has reached up to 92–98% and the detection rate for age recognition is 87%. The proposed algorithm is compared with SVM shows better over previous algorithms and also estimate the value of accuracy.


2010 ◽  
Vol 36 (3) ◽  
pp. 1503-1510 ◽  
Author(s):  
U. Rajendra Acharya ◽  
E. Y. K. Ng ◽  
Jen-Hong Tan ◽  
S. Vinitha Sree

2016 ◽  
Vol 79 (1) ◽  
Author(s):  
Suhail Khokhar ◽  
A. A. Mohd Zin ◽  
M. A. Bhayo ◽  
A. S. Mokhtar

The monitoring of power quality (PQ) disturbances in a systematic and automated way is an important issue to prevent detrimental effects on power system. The development of new methods for the automatic recognition of single and hybrid PQ disturbances is at present a major concern. This paper presents a combined approach of wavelet transform based support vector machine (WT-SVM) for the automatic classification of single and hybrid PQ disturbances. The proposed approach is applied by using synthetic models of various single and hybrid PQ signals. The suitable features of the PQ waveforms were first extracted by using discrete wavelet transform. Then SVM classifies the type of PQ disturbances based on these features. The classification performance of the proposed algorithm is also compared with wavelet based radial basis function neural network, probabilistic neural network and feed-forward neural network. The experimental results show that the recognition rate of the proposed WT-SVM based classification system is more accurate and much better than the other classifiers. 


2017 ◽  
Vol 17 (2) ◽  
pp. 29-38
Author(s):  
Ratih Purwati ◽  
Gunawan Ariyanto

Face Recognition merupakan teknologi komputer untuk mengidentifikasi wajah manusia melalui gambar digital yang tersimpan di database. Wajah manusia dapat berubah bentuk sesuai dengan ekspresi yang dimilikinya. Wajah manusia dapat berubah bentuk sesuai dengan eskpresi yang dimilikinya. Ekspresi wajah manusia memiliki kemiripan satu sama lain sehingga untuk mengenali suatu ekspresi adalah kepunyaan siapa akan sedikit sulit. Pengenalan wajah terus menjadi topik aktif di zaman sekarang pada penelitian bidang computer vision. Penggunaan wajah manusia sering kita jumpai pada fitur-fitur aplikasi media sosial seperti Snapchat, Snapgram dari Instagram dan banyak aplikasi sosial media lainnya yang menggunakan teknologi tersebut. Pada penelitian ini dilakukan analisa pengenalan ekpresi wajah manusia dengan pendekatan fitur alogaritma Local Binary Pattern dan mencari pengembangan alogaritma dasar Local Binary Pattern yang paling optimal dengan cara menggabungkan metode Hisogram Equalization, Support Vector Machine, dan K-fold cross validation sehingga dapat meningkatkan pengenalan gambar wajah manusia pada hasil yang terbaik. Penelitian ini menginput beberapa database wajah manusia seperti JAFFE yang merupakan gambar wajah manusia wanita jepang yang berjumlah 10 orang dengan 7 ekspresi emosional seperti marah, sedih, bahagia, jijik, kaget, takut dan netral ke dalam sistem. YALE yaitu merupakan gambar wajah manusia orang Amerika. Serta menggunakan dataset CALTECH yang merupakan gambar manusia yang terdiri dari 450 gambar dengan ukuran 896 x 592 piksel dan disimpan dalam format JPEG. Kemudian data tersebut di sesuaikan dengan bentuk tekstur wajah masing-masing. Dari hasil penggabungan ketiga metode diatas dan percobaan-percobaan yang sudah dilakukan, didapatkan hasil yang paling optimal dalam pengenalan wajah manusia yaitu menggunakan dataset JAFFE dengan resolusi 92 x 112 piksel dan dengan tingkat penggunaan processor yang tinggi dapat mempengaruhi waktu kecepatan komputasi dalam proses menjalankan sistem sehingga menghasilkan prediksi yang lebih tepat.


2009 ◽  
Vol 07 (05) ◽  
pp. 773-788 ◽  
Author(s):  
PENG CHEN ◽  
CHUNMEI LIU ◽  
LEGAND BURGE ◽  
MOHAMMAD MAHMOOD ◽  
WILLIAM SOUTHERLAND ◽  
...  

Protein fold classification is a key step to predicting protein tertiary structures. This paper proposes a novel approach based on genetic algorithms and feature selection to classifying protein folds. Our dataset is divided into a training dataset and a test dataset. Each individual for the genetic algorithms represents a selection function of the feature vectors of the training dataset. A support vector machine is applied to each individual to evaluate the fitness value (fold classification rate) of each individual. The aim of the genetic algorithms is to search for the best individual that produces the highest fold classification rate. The best individual is then applied to the feature vectors of the test dataset and a support vector machine is built to classify protein folds based on selected features. Our experimental results on Ding and Dubchak's benchmark dataset of 27-class folds show that our approach achieves an accuracy of 71.28%, which outperforms current state-of-the-art protein fold predictors.


Author(s):  
Shiv Ram Dubey ◽  
Anand Singh Jalal

Diseases in fruit cause devastating problems in economic losses and production in the agricultural industry worldwide. In this chapter, a method to detect and classify fruit diseases automatically is proposed and experimentally validated. The image processing-based proposed approach is composed of the following main steps: in the first step K-Means clustering technique is used for the defect segmentation, in the second step some color and texture features are extracted from the segmented defected part, and finally diseases are classified into one of the classes by using a multi-class Support Vector Machine. The authors have considered diseases of apple as a test case and evaluated the approach for three types of apple diseases, namely apple scab, apple blotch, and apple rot, along with normal apples. The experimental results express that the proposed solution can significantly support accurate detection and automatic classification of fruit diseases. The classification accuracy for the proposed approach is achieved up to 93% using textural information and multi-class support vector machine.


Sign in / Sign up

Export Citation Format

Share Document