scholarly journals Modified Potra-Pták Multi-step Schemes with Accelerated Order of Convergence for Solving Systems of Nonlinear Equations

2018 ◽  
Vol 24 (1) ◽  
pp. 3
Author(s):  
Himani Arora ◽  
Juan Torregrosa ◽  
Alicia Cordero

In this study, an iterative scheme of sixth order of convergence for solving systems of nonlinear equations is presented. The scheme is composed of three steps, of which the first two steps are that of third order Potra-Pták method and last is weighted-Newton step. Furthermore, we generalize our work to derive a family of multi-step iterative methods with order of convergence 3 r + 6 , r = 0 , 1 , 2 , … . The sixth order method is the special case of this multi-step scheme for r = 0 . The family gives a four-step ninth order method for r = 1 . As much higher order methods are not used in practice, so we study sixth and ninth order methods in detail. Numerical examples are included to confirm theoretical results and to compare the methods with some existing ones. Different numerical tests, containing academical functions and systems resulting from the discretization of boundary problems, are introduced to show the efficiency and reliability of the proposed methods.

2013 ◽  
Vol 2013 ◽  
pp. 1-11 ◽  
Author(s):  
Janak Raj Sharma ◽  
Puneet Gupta

We present iterative methods of convergence order three, five, and six for solving systems of nonlinear equations. Third-order method is composed of two steps, namely, Newton iteration as the first step and weighted-Newton iteration as the second step. Fifth and sixth-order methods are composed of three steps of which the first two steps are same as that of the third-order method whereas the third is again a weighted-Newton step. Computational efficiency in its general form is discussed and a comparison between the efficiencies of proposed techniques with existing ones is made. The performance is tested through numerical examples. Moreover, theoretical results concerning order of convergence and computational efficiency are verified in the examples. It is shown that the present methods have an edge over similar existing methods, particularly when applied to large systems of equations.


2019 ◽  
Vol 16 (05) ◽  
pp. 1840008
Author(s):  
Ramandeep Behl ◽  
Prashanth Maroju ◽  
S. S. Motsa

In this study, we design a new efficient family of sixth-order iterative methods for solving scalar as well as system of nonlinear equations. The main beauty of the proposed family is that we have to calculate only one inverse of the Jacobian matrix in the case of nonlinear system which reduces the computational cost. The convergence properties are fully investigated along with two main theorems describing their order of convergence. By using complex dynamics tools, its stability is analyzed, showing stable members of the family. From this study, we intend to have more information about these methods in order to detect those with best stability properties. In addition, we also presented a numerical work which confirms the order of convergence of the proposed family is well deduced for scalar, as well as system of nonlinear equations. Further, we have also shown the implementation of the proposed techniques on real world problems like Van der Pol equation, Hammerstein integral equation, etc.


2014 ◽  
Vol 2014 ◽  
pp. 1-5 ◽  
Author(s):  
Sukhjit Singh ◽  
D. K. Gupta

A new iterative method is described for finding the real roots of nonlinear equations inR. Starting with a suitably chosenx0, the method generates a sequence of iterates converging to the root. The convergence analysis is provided to establish its sixth order of convergence. The number of iterations and the total number of function evaluations used to get a simple root are taken as performance measure of our method. The efficacy of the method is tested on a number of numerical examples and the results obtained are summarized in tables. It is observed that our method is superior to Newton’s method and other sixth order methods considered.


2014 ◽  
Vol 2014 ◽  
pp. 1-8
Author(s):  
Wen Zhou ◽  
Jisheng Kou

We present a third-order method for solving the systems of nonlinear equations. This method is a Newton-type scheme with the vector extrapolation. We establish the local and semilocal convergence of this method. Numerical results show that the composite method is more robust and efficient than a number of Newton-type methods with the other vector extrapolations.


Author(s):  
Janak Raj Sharma ◽  
Sunil Kumar ◽  
Ioannis K. Argyros

In this paper, a class of efficient iterative methods with increasing order of convergence for solving systems of nonlinear equations is developed and analyzed. The methodology uses well-known third-order Potra–Pták iteration in the first step and Newton-like iterations in the subsequent steps. Novelty of the methods is the increase in convergence order by an amount three per step at the cost of only one additional function evaluation. In addition, the algorithm uses a single inverse operator in each iteration, which makes it computationally more efficient and attractive. Local convergence is studied in the more general setting of a Banach space under suitable assumptions. Theoretical results of convergence and computational efficiency are verified through numerical experimentation. Comparison of numerical results indicates that the developed algorithms outperform the other similar algorithms available in the literature, particularly when applied to solve the large systems of equations. The basins of attraction of some of the existing methods along with the proposed method are given to exhibit their performance.


2019 ◽  
Vol 17 (1) ◽  
pp. 1567-1598
Author(s):  
Tianbao Liu ◽  
Xiwen Qin ◽  
Qiuyue Li

Abstract In this paper, we derive and analyze a new one-parameter family of modified Cauchy method free from second derivative for obtaining simple roots of nonlinear equations by using Padé approximant. The convergence analysis of the family is also considered, and the methods have convergence order three. Based on the family of third-order method, in order to increase the order of the convergence, a new optimal fourth-order family of modified Cauchy methods is obtained by using weight function. We also perform some numerical tests and the comparison with existing optimal fourth-order methods to show the high computational efficiency of the proposed scheme, which confirm our theoretical results. The basins of attraction of this optimal fourth-order family and existing fourth-order methods are presented and compared to illustrate some elements of the proposed family have equal or better stable behavior in many aspects. Furthermore, from the fractal graphics, with the increase of the value m of the series in iterative methods, the chaotic behaviors of the methods become more and more complex, which also reflected in some existing fourth-order methods.


Symmetry ◽  
2019 ◽  
Vol 11 (7) ◽  
pp. 891 ◽  
Author(s):  
Janak Raj Sharma ◽  
Deepak Kumar ◽  
Lorentz Jäntschi

We propose a derivative-free iterative method with fifth order of convergence for solving systems of nonlinear equations. The scheme is composed of three steps, of which the first two steps are that of third order Traub-Steffensen-type method and the last is derivative-free modification of Chebyshev’s method. Computational efficiency is examined and comparison between the efficiencies of presented technique with existing techniques is performed. It is proved that, in general, the new method is more efficient. Numerical problems, including those resulting from practical problems viz. integral equations and boundary value problems, are considered to compare the performance of the proposed method with existing methods. Calculation of computational order of convergence shows that the order of convergence of the new method is preserved in all the numerical examples, which is not so in the case of some of the existing higher order methods. Moreover, the numerical results, including the CPU-time consumed in the execution of program, confirm the accurate and efficient behavior of the new technique.


Sign in / Sign up

Export Citation Format

Share Document