scholarly journals About Chirality in Minkowski Spacetime

Symmetry ◽  
2019 ◽  
Vol 11 (10) ◽  
pp. 1320 ◽  
Author(s):  
Michel Petitjean

In this paper, we show that Lorentz boosts are direct isometries according to the recent mathematical definitions of direct and indirect isometries and of chirality, working for any metric space. Here, these definitions are extended to the Minkowski spacetime. We also show that the composition of parity inversion and time reversal is an indirect isometry, which is the opposite of what could be expected in Euclidean spaces. It is expected that the extended mathematical definition of chirality presented here can contribute to the unification of several definitions of chirality in space and in spacetime, and that it helps clarify the ubiquitous concept of chirality.

2019 ◽  
Vol 8 (1) ◽  
Author(s):  
Ryan Joseph Rogers ◽  
Ning Zhong

In this note, we provide the definition of a metric space and establish that, while all Euclidean spaces are metric spaces, not all metric spaces are Euclidean spaces. It is then natural and interesting to ask which theorems that hold in Euclidean spaces can be extended to general metric spaces and which ones cannot be extended. We survey this topic by considering six well-known theorems which hold in Euclidean spaces and rigorously exploring their validities in general metric spaces.


Author(s):  
Zakaria Ndemo ◽  
David Mtetwa

The concept of a mathematical definition causes severe difficulties among students during problem solving and proving activities. Students’ difficulties with the use of mathematical definitions often arise from the fact that students are often given those definitions instead of constructing them. With the aim of developing an understanding of the kinds of student teachers evoked concept images of the notion of  angle of contiguity, a qualitative case study was conducted at one state university in Zimbabwe. Purposive sampling was used to select 28 mathematics undergraduate student teachers who responded to a test item. Qualitative data analysis was guided by ideas drawn from the theoretical framework of Abstraction in Context and idea of imperative features of a mathematical definition.  Student teachers written responses revealed that student teachers personal concept definitions consisted of ambiguous and irrelevant formulations that did not capture the essence of the idea of the angle of contiguity. In some cases their responses were not consistent with the definition of the angle of contiguity.  Although there were a few instances of adequate descriptions of the concept, (8 out of  32) these and the inadequate descriptors elicited can contribute significantly towards efforts intended to improve mathematics instruction.  Improved mathematics instruction will lead to enhanced conceptualizations of mathematics concepts.


Symmetry ◽  
2020 ◽  
Vol 12 (4) ◽  
pp. 616
Author(s):  
Michel Petitjean

We emphasize the differences between the chirality concept applied to relativistic fermions and the ususal chirality concept in Euclidean spaces. We introduce the gamma groups and we use them to classify as direct or indirect the symmetry operators encountered in the context of Dirac algebra. Then we show how a recent general mathematical definition of chirality unifies the chirality concepts and resolve conflicting conclusions about symmetry operators, and particularly about the so-called chirality operator. The proofs are based on group theory rather than on Clifford algebras. The results are independent on the representations of Dirac gamma matrices, and stand for higher dimensional ones.


Symmetry ◽  
2020 ◽  
Vol 13 (1) ◽  
pp. 32
Author(s):  
Pragati Gautam ◽  
Luis Manuel Sánchez Ruiz ◽  
Swapnil Verma

The purpose of this study is to introduce a new type of extended metric space, i.e., the rectangular quasi-partial b-metric space, which means a relaxation of the symmetry requirement of metric spaces, by including a real number s in the definition of the rectangular metric space defined by Branciari. Here, we obtain a fixed point theorem for interpolative Rus–Reich–Ćirić contraction mappings in the realm of rectangular quasi-partial b-metric spaces. Furthermore, an example is also illustrated to present the applicability of our result.


2020 ◽  
pp. 1-23
Author(s):  
TUYEN TRUNG TRUONG

Abstract A strong submeasure on a compact metric space X is a sub-linear and bounded operator on the space of continuous functions on X. A strong submeasure is positive if it is non-decreasing. By the Hahn–Banach theorem, a positive strong submeasure is the supremum of a non-empty collection of measures whose masses are uniformly bounded from above. There are many natural examples of continuous maps of the form $f:U\rightarrow X$ , where X is a compact metric space and $U\subset X$ is an open-dense subset, where f cannot extend to a reasonable function on X. We can mention cases such as transcendental maps of $\mathbb {C}$ , meromorphic maps on compact complex varieties, or continuous self-maps $f:U\rightarrow U$ of a dense open subset $U\subset X$ where X is a compact metric space. For the aforementioned mentioned the use of measures is not sufficient to establish the basic properties of ergodic theory, such as the existence of invariant measures or a reasonable definition of measure-theoretic entropy and topological entropy. In this paper we show that strong submeasures can be used to completely resolve the issue and establish these basic properties. In another paper we apply strong submeasures to the intersection of positive closed $(1,1)$ currents on compact Kähler manifolds.


2011 ◽  
Vol 133 (1) ◽  
Author(s):  
Steven Turek ◽  
Sam Anand

Digital measurement devices, such as coordinate measuring machines, laser scanning devices, and digital imaging, can provide highly accurate and precise coordinate data representing the sampled surface. However, this discrete measurement process can only account for measured data points, not the entire continuous form, and is heavily influenced by the algorithm that interprets the measured data. The definition of cylindrical size for an external feature as specified by ASME Y14.5.1M-1994 [The American Society of Mechanical Engineers, 1995, Dimensioning and Tolerancing, ASME Standard Y14.5M-1994, ASME, New York, NY; The American Society of Mechanical Engineers, 1995, Mathematical Definition of Dimensioning and Tolerancing Principles, ASME Standard Y14.5.1M-1994, ASME, New York, NY] matches the analytical definition of a minimum circumscribing cylinder (MCC) when rule no. 1 [The American Society of Mechanical Engineers, 1995, Dimensioning and Tolerancing, ASME Standard Y14.5M-1994, ASME, New York, NY; The American Society of Mechanical Engineers, 1995, Mathematical Definition of Dimensioning and Tolerancing Principles, ASME Standard Y14.5.1M-1994, ASME, New York, NY] is applied to ensure a linear axis. Even though the MCC is a logical choice for size determination, it is highly sensitive to the sampling method and any uncertainties encountered in that process. Determining the least-sum-of-squares solution is an alternative method commonly utilized in size determination. However, the least-squares formulation seeks an optimal solution not based on the cylindrical size definition [The American Society of Mechanical Engineers, 1995, Dimensioning and Tolerancing, ASME Standard Y14.5M-1994, ASME, New York, NY; The American Society of Mechanical Engineers, 1995, Mathematical Definition of Dimensioning and Tolerancing Principles, ASME Standard Y14.5.1M-1994, ASME, New York, NY] and thus has been shown to be biased [Hopp, 1993, “Computational Metrology,” Manuf. Rev., 6(4), pp. 295–304; Nassef, and ElMaraghy, 1999, “Determination of Best Objective Function for Evaluating Geometric Deviations,” Int. J. Adv. Manuf. Technol., 15, pp. 90–95]. This work builds upon previous research in which the hull normal method was presented to determine the size of cylindrical bosses when rule no. 1 is applied [Turek, and Anand, 2007, “A Hull Normal Approach for Determining the Size of Cylindrical Features,” ASME, Atlanta, GA]. A thorough analysis of the hull normal method’s performance in various circumstances is presented here to validate it as a superior alternative to the least-squares and MCC solutions for size evaluation. The goal of the hull normal method is to recreate the sampled surface using computational geometry methods and to determine the cylinder’s axis and radius based upon it. Based on repetitive analyses of random samples of data from several measured parts and generated forms, it was concluded that the hull normal method outperformed all traditional solution methods. The hull normal method proved to be robust by having a lower bias and distributions that were skewed toward the true value of the radius, regardless of the amount of form error.


1992 ◽  
Vol 37 (9) ◽  
pp. 691-694 ◽  
Author(s):  
V.F. Ferrario ◽  
C. Sforza ◽  
A. Miani ◽  
A. Colombo ◽  
G. Tartaglia

Mathematics ◽  
2019 ◽  
Vol 7 (10) ◽  
pp. 884 ◽  
Author(s):  
Tahair Rasham ◽  
Giuseppe Marino ◽  
Abdullah Shoaib

Recently, George et al. (in Georgea, R.; Radenovicb, S.; Reshmac, K.P.; Shuklad, S. Rectangular b-metric space and contraction principles. J. Nonlinear Sci. Appl. 2015, 8, 1005–1013) furnished the notion of rectangular b-metric pace (RBMS) by taking the place of the binary sum of triangular inequality in the definition of a b-metric space ternary sum and proved some results for Banach and Kannan contractions in such space. In this paper, we achieved fixed-point results for a pair of F-dominated mappings fulfilling a generalized rational F-dominated contractive condition in the better framework of complete rectangular b-metric spaces complete rectangular b-metric spaces. Some new fixed-point results with graphic contractions for a pair of graph-dominated mappings on rectangular b-metric space have been obtained. Some examples are given to illustrate our conclusions. New results in ordered spaces, partial b-metric space, dislocated metric space, dislocated b-metric space, partial metric space, b-metric space, rectangular metric spaces, and metric space can be obtained as corollaries of our results.


2012 ◽  
Vol 22 (06) ◽  
pp. 1250130
Author(s):  
CHANGMING DING

This paper deals with intertwined basins of attraction for dynamical systems in a metric space. After giving a general definition of intertwining property, which is preserved by a topological equivalence between dynamical systems, we present a sufficient condition to guarantee the existence of intertwined basins for dynamical systems in ℝn.


Sign in / Sign up

Export Citation Format

Share Document