A Hull Normal Based Approach for Cylindrical Size Assessment

2011 ◽  
Vol 133 (1) ◽  
Author(s):  
Steven Turek ◽  
Sam Anand

Digital measurement devices, such as coordinate measuring machines, laser scanning devices, and digital imaging, can provide highly accurate and precise coordinate data representing the sampled surface. However, this discrete measurement process can only account for measured data points, not the entire continuous form, and is heavily influenced by the algorithm that interprets the measured data. The definition of cylindrical size for an external feature as specified by ASME Y14.5.1M-1994 [The American Society of Mechanical Engineers, 1995, Dimensioning and Tolerancing, ASME Standard Y14.5M-1994, ASME, New York, NY; The American Society of Mechanical Engineers, 1995, Mathematical Definition of Dimensioning and Tolerancing Principles, ASME Standard Y14.5.1M-1994, ASME, New York, NY] matches the analytical definition of a minimum circumscribing cylinder (MCC) when rule no. 1 [The American Society of Mechanical Engineers, 1995, Dimensioning and Tolerancing, ASME Standard Y14.5M-1994, ASME, New York, NY; The American Society of Mechanical Engineers, 1995, Mathematical Definition of Dimensioning and Tolerancing Principles, ASME Standard Y14.5.1M-1994, ASME, New York, NY] is applied to ensure a linear axis. Even though the MCC is a logical choice for size determination, it is highly sensitive to the sampling method and any uncertainties encountered in that process. Determining the least-sum-of-squares solution is an alternative method commonly utilized in size determination. However, the least-squares formulation seeks an optimal solution not based on the cylindrical size definition [The American Society of Mechanical Engineers, 1995, Dimensioning and Tolerancing, ASME Standard Y14.5M-1994, ASME, New York, NY; The American Society of Mechanical Engineers, 1995, Mathematical Definition of Dimensioning and Tolerancing Principles, ASME Standard Y14.5.1M-1994, ASME, New York, NY] and thus has been shown to be biased [Hopp, 1993, “Computational Metrology,” Manuf. Rev., 6(4), pp. 295–304; Nassef, and ElMaraghy, 1999, “Determination of Best Objective Function for Evaluating Geometric Deviations,” Int. J. Adv. Manuf. Technol., 15, pp. 90–95]. This work builds upon previous research in which the hull normal method was presented to determine the size of cylindrical bosses when rule no. 1 is applied [Turek, and Anand, 2007, “A Hull Normal Approach for Determining the Size of Cylindrical Features,” ASME, Atlanta, GA]. A thorough analysis of the hull normal method’s performance in various circumstances is presented here to validate it as a superior alternative to the least-squares and MCC solutions for size evaluation. The goal of the hull normal method is to recreate the sampled surface using computational geometry methods and to determine the cylinder’s axis and radius based upon it. Based on repetitive analyses of random samples of data from several measured parts and generated forms, it was concluded that the hull normal method outperformed all traditional solution methods. The hull normal method proved to be robust by having a lower bias and distributions that were skewed toward the true value of the radius, regardless of the amount of form error.

Author(s):  
Steven Turek ◽  
Sam Anand

In coordinate metrology, discrete data is sampled from a continuous form to assess the manufactured feature’s deviation from its design specifications. Although coordinate measuring machines have a high degree of accuracy, the unsampled portion of the manufactured object cannot be completely described. The definition of cylindrical size for an external feature as specified by ASME Y14.5.1M-1994 [1,2] matches the analytical definition of a minimum circumscribing cylinder (MCC) when Rule #1 is applied. Even though the MCC is a logical analysis technique for size determination, it is highly sensitive to the sampling method and any uncertainties encountered in that process. Determining the least-sum-of-squares solution is an alternative method commonly utilized in size determination. However, the least-squares formulation seeks an optimal solution not based on the cylindrical size definition [1,2], and hence has been shown to be biased [6,7]. This research presents a novel Hull Normal method for size determination of cylindrical bosses. The goal of the proposed method is to recreate the sampled surface using computational geometry methods and determine the cylinder’s axis and radius based upon the reconstructed surface. Through varying the random sample size of data from an actual measured part, repetitive analyses resulted in the Hull Normal method having a lower bias and distributions that were skewed towards the true value of the radius.


Author(s):  
Craig M. Shakarji ◽  
Vijay Srinivasan

Recent advances in the digitization of manufacturing have prompted ASME and ISO standards committees to reexamine the definition of datums. Any new definition of datums considered by the standards committees should cover all datum feature types used in design, and support both traditional metrological methods and new digital measurement techniques. This is a challenging task that requires some careful compromise. This paper describes and analyzes various alternatives considered by the standards committees. Among them is a new mathematical definition of datums based on constrained least-squares fitting. It seems to provide the best compromise and has the potential to support advanced manufacturing that is increasingly dependent on digital technologies.


Think India ◽  
2019 ◽  
Vol 22 (3) ◽  
pp. 875-879
Author(s):  
M. Thendral ◽  
Dr. G. Parvathy

DeLillo is a well- known American novelist of fifteen novels, who is widely regarded by other critics as an important satirist of modern culture. Throughout his novels, he has picturized the chaos underwent by the society i.e. the effects of media, technology and popular culture on the daily lives of contemporary American society. All of his novels move in and around New York City as a setting. The study attempts to examine the development of New York City and individuals in a post-modernistic perspective.


2017 ◽  
Author(s):  
Alex Huynh ◽  
Igor Grossmann

Ever since social scientists became interested in understanding intergroup dynamics, the topic of the “middle class” and its distinction from other groups in society became the central feature of a theoretical and empirical research enterprise. In this overview essay we discuss the beliefs, values and behavioral tendencies attributed to American middle class beliefs, and discuss their implications for understanding class-related norms and values. We end with a reflection over the historical trends that impact societal norms and the definition of middle class in the American society.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Jing-Zhou Hou ◽  
Jing Christine Ye ◽  
Jeffrey J. Pu ◽  
Hongtao Liu ◽  
Wei Ding ◽  
...  

AbstractAntibodies and chimeric antigen receptor-engineered T cells (CAR-T) are increasingly used for cancer immunotherapy. Small molecule inhibitors targeting cellular oncoproteins and enzymes such as BCR-ABL, JAK2, Bruton tyrosine kinase, FLT3, BCL-2, IDH1, IDH2, are biomarker-driven chemotherapy-free agents approved for several major hematological malignancies. LOXO-305, asciminib, “off-the-shelf” universal CAR-T cells and BCMA-directed immunotherapeutics as well as data from clinical trials on many novel agents and regimens were updated at the 2020 American Society of Hematology (ASH) Annual Meeting. Major developments and updates for the therapy of hematological malignancies were delineated at the recent Winter Symposium and New York Oncology Forum from the Chinese American Hematologist and Oncologist Network (CAHON.org). This study summarized the latest updates on novel agents and regimens for hematological malignancies from the 2020 ASH annual meeting.


Sign in / Sign up

Export Citation Format

Share Document