scholarly journals On Valency-Based Molecular Topological Descriptors of Subdivision Vertex-Edge Join of Three Graphs

Symmetry ◽  
2020 ◽  
Vol 12 (6) ◽  
pp. 1026 ◽  
Author(s):  
Juan L. G. Guirao ◽  
Muhammad Imran ◽  
Muhammad Kamran Siddiqui ◽  
Shehnaz Akhter

In the studies of quantitative structure–activity relationships (QSARs) and quantitative structure–property relationships (QSPRs), graph invariants are used to estimate the biological activities and properties of chemical compounds. In these studies, degree-based topological indices have a significant place among the other descriptors because of the ease of generation and the speed with which these computations can be accomplished. In this paper, we give the results related to the first, second, and third Zagreb indices, forgotten index, hyper Zagreb index, reduced first and second Zagreb indices, multiplicative Zagreb indices, redefined version of Zagreb indices, first reformulated Zagreb index, harmonic index, atom-bond connectivity index, geometric-arithmetic index, and reduced reciprocal Randić index of a new graph operation named as “subdivision vertex-edge join” of three graphs.

2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Peng Xu ◽  
Mehran Azeem ◽  
Muhammad Mubashir Izhar ◽  
Syed Mazhar Shah ◽  
Muhammad Ahsan Binyamin ◽  
...  

Topological indices are numerical numbers that represent the topology of a molecule and are calculated from the graphical depiction of the molecule. The importance of topological indices is due to their use as descriptors in QSPR/QSAR modeling. QSPRs (quantitative structure-property relationships) and QSARs (quantitative structure-activity relationships) are mathematical correlations between a specified molecular property or biological activity and one or more physicochemical and/or molecular structural properties. In this paper, we give explicit expressions of some degree-based topological indices of two classes of metal-organic frameworks (MOFs), namely, butylated hydroxytoluene- (BHT-) based metal-organic ( M = Co , Fe, Mn, Cr) (MBHT) frameworks and M 1 TPyP − M 2 (TPyP =  5,10,15,20 -tetrakis(4-pyridyl)porphyrin and M 1 , M 2  = Fe and Co) MOFs.


2020 ◽  
Vol 43 (1) ◽  
pp. 219-228
Author(s):  
Ghulam Dustigeer ◽  
Haidar Ali ◽  
Muhammad Imran Khan ◽  
Yu-Ming Chu

AbstractChemical graph theory is a branch of graph theory in which a chemical compound is presented with a simple graph called a molecular graph. There are atomic bonds in the chemistry of the chemical atomic graph and edges. The graph is connected when there is at least one connection between its vertices. The number that describes the topology of the graph is called the topological index. Cheminformatics is a new subject which is a combination of chemistry, mathematics and information science. It studies quantitative structure-activity (QSAR) and structure-property (QSPR) relationships that are used to predict the biological activities and properties of chemical compounds. We evaluated the second multiplicative Zagreb index, first and second universal Zagreb indices, first and second hyper Zagreb indices, sum and product connectivity indices for the planar octahedron network, triangular prism network, hex planar octahedron network, and give these indices closed analytical formulas.


2019 ◽  
Vol 97 (10) ◽  
pp. 1125-1132 ◽  
Author(s):  
Zahid Iqbal ◽  
Adnan Aslam ◽  
Muhammad Ishaq ◽  
Muhammad Aamir

In many applications and problems in material engineering and chemistry, it is valuable to know how irregular a given molecular structure is. Furthermore, measures of the irregularity of underlying molecular graphs could be helpful for quantitative structure property relationships and quantitative structure-activity relationships studies, and for determining and expressing chemical and physical properties, such as toxicity, resistance, and melting and boiling points. Here we explore the following three irregularity measures: the irregularity index by Albertson, the total irregularity, and the variance of vertex degrees. Using graph structural analysis and derivation, we compute the above-mentioned irregularity measures of several molecular graphs of nanotubes.


2017 ◽  
Vol 14 (7) ◽  
pp. 442 ◽  
Author(s):  
Tom M. Nolte ◽  
Willie J. G. M. Peijnenburg

Environmental contextTo aid the transition to sustainable chemistry there is a need to improve the degradability of chemicals and limit the use of organic solvents. Singlet oxygen, 1O2, is involved in organic synthesis and photochemical degradation; however, information on its aqueous-phase reactivity is limited. We developed cheminformatics models for photooxidation rate constants that will enable accurate assessment of aquatic photochemistry without experimentation. AbstractTo aid the transition to sustainable and green chemistry there is a general need to improve the degradability of chemicals and limit the use of organic solvents. In this study we developed quantitative structure–property relationships (QSPRs) for aqueous-phase photochemical reactions by singlet (a1Δg) oxygen. The bimolecular singlet oxygen reaction rate constant can be reliably estimated (R2 = 0.73 for naphtalenes and anthracenes, R2 = 0.86 for enes and R2 = 0.88 for aromatic amines) using the energy of the highest occupied molecular orbital (EHOMO). Additional molecular descriptors were used to characterise electronic and steric factors influencing the rate constant for aromatic enes (R2 = 0.74), sulfides and thiols (R2 = 0.72) and aliphatic amines. Mechanistic principles (frontier molecular orbital, perturbation and transition state theories) were applied to interpret the QSPRs developed and to corroborate findings in the literature. Depending on resonance, the speciation state (through protonation and deprotonation) can heavily influence the oxidation rate constant, which was accurately predicted. The QSPRs can be applied in synthetic photochemistry and for estimating chemical fate from photolysis or advanced water treatment.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Magnus Röding ◽  
Zheng Ma ◽  
Salvatore Torquato

Abstract Quantitative structure–property relationships are crucial for the understanding and prediction of the physical properties of complex materials. For fluid flow in porous materials, characterizing the geometry of the pore microstructure facilitates prediction of permeability, a key property that has been extensively studied in material science, geophysics and chemical engineering. In this work, we study the predictability of different structural descriptors via both linear regressions and neural networks. A large data set of 30,000 virtual, porous microstructures of different types, including both granular and continuous solid phases, is created for this end. We compute permeabilities of these structures using the lattice Boltzmann method, and characterize the pore space geometry using one-point correlation functions (porosity, specific surface), two-point surface-surface, surface-void, and void-void correlation functions, as well as the geodesic tortuosity as an implicit descriptor. Then, we study the prediction of the permeability using different combinations of these descriptors. We obtain significant improvements of performance when compared to a Kozeny-Carman regression with only lowest-order descriptors (porosity and specific surface). We find that combining all three two-point correlation functions and tortuosity provides the best prediction of permeability, with the void-void correlation function being the most informative individual descriptor. Moreover, the combination of porosity, specific surface, and geodesic tortuosity provides very good predictive performance. This shows that higher-order correlation functions are extremely useful for forming a general model for predicting physical properties of complex materials. Additionally, our results suggest that artificial neural networks are superior to the more conventional regression methods for establishing quantitative structure–property relationships. We make the data and code used publicly available to facilitate further development of permeability prediction methods.


Sign in / Sign up

Export Citation Format

Share Document