scholarly journals Robust Filtering for Discrete-Time Linear Parameter-Varying Descriptor Systems

Symmetry ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 1871 ◽  
Author(s):  
Carlos Rodriguez ◽  
Karina A. Barbosa ◽  
Daniel Coutinho

This paper deals with robust state estimation for discrete-time, linear parameter varying (LPV) descriptor systems. It is assumed that all the system state-space matrices are affine functions of the uncertain parameters and both the parameters and their variations are bounded functions of time with known minimum and maximum values. First, necessary and sufficient conditions are proposed for admissibility and bounded realness for discrete linear time-varying (DLTV) descriptor systems. Next, two convex optimisation based methods are proposed for designing admissible stationary linear descriptor filters for LPV descriptor systems which ensure a prescribed upper bound on the ℓ2-induced gain from the noise signal to the estimation error regardless of model uncertainties. The proposed filter design results were based on parameter-dependent generalised Lyapunov functions, and full-order, augmented-order and reduced-order filters were considered. Numerical examples are presented to show the effectiveness of the proposed filtering scheme. In particular, the proposed approach was used to estimate the state variables of a controlled horizontal 2-DOF robotic manipulator based on noisy measurements.

2017 ◽  
Vol 2017 ◽  
pp. 1-13 ◽  
Author(s):  
Ali Ben Brahim ◽  
Slim Dhahri ◽  
Fayçal Ben Hmida ◽  
Anis Sallami

This paper proposes a scheme to estimate actuator and sensor faults simultaneously for a class of linear parameter varying system expressed in polytopic structure where its parameters evolve in the hypercube domain. Transformed coordinate system design is adopted to decouple faults in actuators and sensors during the course of the system’s operation coincidentally, and then two polytopic subsystems are constructed. The first subsystem includes the effect of actuator faults but is free from sensor faults and the second one is affected only by sensor faults. The main contribution is to conceive two polytopic sliding mode observers in order to estimate the system states and actuator and sensor faults at the same time. Meanwhile, in linear matrix inequality optimization formalism, sufficient conditions are derived withH∞performances to guarantee the stability of estimation error and to minimize the effect of disturbances. Therefore, all parameters of observers can be designed by solving these conditions. Finally, simulation results are given to illustrate the effectiveness of the proposed simultaneous actuator and sensor faults estimation.


Sign in / Sign up

Export Citation Format

Share Document