Improved whale optimization algorithm based on variable spiral position update strategy and adaptive inertia weight

2021 ◽  
pp. 1-17
Author(s):  
Maodong Li ◽  
Guanghui Xu ◽  
Yuanwang Fu ◽  
Tingwei Zhang ◽  
Li Du

 In this paper, a whale optimization algorithm based on adaptive inertia weight and variable spiral position updating strategy is proposed. The improved algorithm is used to solve the problem that the whale optimization algorithm is more dependent on the randomness of the parameters, so that the algorithm’s convergence accuracy and convergence speed are insufficient. The adaptive inertia weight, which varies with the fitness of individual whales, is used to balance the algorithm’s global search ability and local exploitation ability. The variable spiral position update strategy based on the collaborative convergence mechanism is used to dynamically adjust the search range and search accuracy of the algorithm. The effective combination of the two can make the improved whale optimization algorithm converge to the optimal solution faster. It had been used 18 international standard test functions, including unimodal function, multimodal function, and fixed-dimensional function to test the improved whale optimization algorithm in this paper. The test results show that the improved algorithm has faster convergence speed and higher algorithm accuracy than the original algorithm and several classic algorithms. The algorithm can quickly converge to near the optimal value in the early stage, and then effectively jump out of the local optimal through adaptive adjustment, and has a certain ability to solve large-scale optimization problems.

2021 ◽  
Vol 40 (1) ◽  
pp. 363-379
Author(s):  
Yanju Guo ◽  
Huan Shen ◽  
Lei Chen ◽  
Yu Liu ◽  
Zhilong Kang

Whale Optimization Algorithm (WOA) is a relatively novel algorithm in the field of meta-heuristic algorithms. WOA can reveal an efficient performance compared with other well-established optimization algorithms, but there is still a problem of premature convergence and easy to fall into local optimal in complex multimodal functions, so this paper presents an improved WOA, and proposes the random hopping update strategy and random control parameter strategy to improve the exploration and exploitation ability of WOA. In this paper, 24 well-known benchmark functions are used to test the algorithm, including 10 unimodal functions and 14 multimodal functions. The experimental results show that the convergence accuracy of the proposed algorithm is better than that of the original algorithm on 21 functions, and better than that of the other 5 algorithms on 23 functions.


2020 ◽  
Vol 5 (3) ◽  
pp. 147-155
Author(s):  
I-Ming Chao ◽  
Shou-Cheng Hsiung ◽  
Jenn-Long Liu

Whale Optimization Algorithm (WOA) is a new kind of swarm-based optimization algorithm that mimics the foraging behavior of humpback whales. WOA models the particular hunting behavior with three stages: encircling prey, bubble-net attacking, and search for prey. In this work, we proposed a new linear decreasing inertia weight with a random exploration ability (LDIWR) strategy. It also compared with the other three inertia weight WOA (IWWOA) methods: constant inertia weight (CIW), linear decreasing inertia weight (LDIW), and linear increasing inertia weight (LIIW) by adding fixed or linear inertia weights to the position vector of the reference whale. The four IWWOAs are tested with 23 mathematical and theoretical optimization benchmark functions. Experimental results show that most of IWWOAs outperform the original WOA in terms of solution accuracy and convergence rate when solving global optimization problems. Accordingly, the LDIWR strategy produces a better balance between exploration and exploitation capabilities for multimodal functions.


Symmetry ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 1892
Author(s):  
Pengzhen Du ◽  
Weiming Cheng ◽  
Ning Liu ◽  
Haofeng Zhang ◽  
Jianfeng Lu

As a novel meta-heuristic algorithm, the Whale Optimization Algorithm (WOA) has well performance in solving optimization problems. However, WOA usually tends to trap in local optimal and it suffers slow convergence speed for large-scale and high-dimension optimization problems. A modified whale optimization algorithm with single-dimensional swimming (abbreviated as SWWOA) is proposed in order to overcome the shortcoming. First, tent map is applied to generate the initialize population for maximize search ability. Second, quasi-opposition learning is adopted after every iteration for further improving the search ability. Third, a novel nonlinearly control parameter factor that is based on logarithm function is presented in order to balance exploration and exploitation. Additionally, the last, single-dimensional swimming is proposed in order to replace the prey behaviour in standard WOA for tuning. The simulation experiments were conducted on 20 well-known benchmark functions. The results show that the proposed SWWOA has better performance in solution precision and higher convergence speed than the comparison methods.


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Gui-Ying Ning ◽  
Dun-Qian Cao

In view of the shortcomings of the whale optimization algorithm (WOA), such as slow convergence speed, low accuracy, and easy to fall into local optimum, an improved whale optimization algorithm (IWOA) is proposed. First, the standard WOA is improved from the three aspects of initial population, convergence factor, and mutation operation. At the same time, Gaussian mutation is introduced. Then the nonfixed penalty function method is used to transform the constrained problem into an unconstrained problem. Finally, 13 benchmark problems were used to test the feasibility and effectiveness of the proposed method. Numerical results show that the proposed IWOA has obvious advantages such as stronger global search ability, better stability, faster convergence speed, and higher convergence accuracy; it can be used to effectively solve complex constrained optimization problems.


Symmetry ◽  
2020 ◽  
Vol 13 (1) ◽  
pp. 48
Author(s):  
Jin Zhang ◽  
Li Hong ◽  
Qing Liu

The whale optimization algorithm is a new type of swarm intelligence bionic optimization algorithm, which has achieved good optimization results in solving continuous optimization problems. However, it has less application in discrete optimization problems. A variable neighborhood discrete whale optimization algorithm for the traveling salesman problem (TSP) is studied in this paper. The discrete code is designed first, and then the adaptive weight, Gaussian disturbance, and variable neighborhood search strategy are introduced, so that the population diversity and the global search ability of the algorithm are improved. The proposed algorithm is tested by 12 classic problems of the Traveling Salesman Problem Library (TSPLIB). Experiment results show that the proposed algorithm has better optimization performance and higher efficiency compared with other popular algorithms and relevant literature.


Mathematics ◽  
2021 ◽  
Vol 9 (13) ◽  
pp. 1477
Author(s):  
Chun-Yao Lee ◽  
Guang-Lin Zhuo

This paper proposes a hybrid whale optimization algorithm (WOA) that is derived from the genetic and thermal exchange optimization-based whale optimization algorithm (GWOA-TEO) to enhance global optimization capability. First, the high-quality initial population is generated to improve the performance of GWOA-TEO. Then, thermal exchange optimization (TEO) is applied to improve exploitation performance. Next, a memory is considered that can store historical best-so-far solutions, achieving higher performance without adding additional computational costs. Finally, a crossover operator based on the memory and a position update mechanism of the leading solution based on the memory are proposed to improve the exploration performance. The GWOA-TEO algorithm is then compared with five state-of-the-art optimization algorithms on CEC 2017 benchmark test functions and 8 UCI repository datasets. The statistical results of the CEC 2017 benchmark test functions show that the GWOA-TEO algorithm has good accuracy for global optimization. The classification results of 8 UCI repository datasets also show that the GWOA-TEO algorithm has competitive results with regard to comparison algorithms in recognition rate. Thus, the proposed algorithm is proven to execute excellent performance in solving optimization problems.


2022 ◽  
Vol 13 (1) ◽  
pp. 0-0

This paper reports the use of a nature-inspired metaheuristic algorithm known as ‘Whale Optimization Algorithm’ (WOA) for multimodal image registration. WOA is based on the hunting behaviour of Humpback whales and provides better exploration and exploitation of the search space with small possibility of trapping in local optima. Though WOA is used in various optimization problems, no detailed study is available for its use in image registration. For this study different sets of NIR and visible images are considered. The registration results are compared with the other state of the art image registration methods. The results show that WOA is a very competitive algorithm for NIR-visible image registration. With the advantages of better exploration of search space and local optima avoidance, the algorithm can be a suitable choice for multimodal image registration.


2019 ◽  
Vol 52 (6) ◽  
pp. 945-959 ◽  
Author(s):  
Abdelazim G. Hussien ◽  
Aboul Ella Hassanien ◽  
Essam H. Houssein ◽  
Mohamed Amin ◽  
Ahmad Taher Azar

2019 ◽  
Vol 11 (23) ◽  
pp. 2795 ◽  
Author(s):  
Guojiang Xiong ◽  
Jing Zhang ◽  
Dongyuan Shi ◽  
Lin Zhu ◽  
Xufeng Yuan ◽  
...  

Extracting accurate values for involved unknown parameters of solar photovoltaic (PV) models is very important for modeling PV systems. In recent years, the use of metaheuristic algorithms for this problem tends to be more popular and vibrant due to their efficacy in solving highly nonlinear multimodal optimization problems. The whale optimization algorithm (WOA) is a relatively new and competitive metaheuristic algorithm. In this paper, an improved variant of WOA referred to as MCSWOA, is proposed to the parameter extraction of PV models. In MCSWOA, three improved components are integrated together: (i) Two modified search strategies named WOA/rand/1 and WOA/current-to-best/1 inspired by differential evolution are designed to balance the exploration and exploitation; (ii) a crossover operator based on the above modified search strategies is introduced to meet the search-oriented requirements of different dimensions; and (iii) a selection operator instead of the “generate-and-go” operator used in the original WOA is employed to prevent the population quality getting worse and thus to guarantee the consistency of evolutionary direction. The proposed MCSWOA is applied to five PV types. Both single diode and double diode models are used to model these five PV types. The good performance of MCSWOA is verified by various algorithms.


Sign in / Sign up

Export Citation Format

Share Document