scholarly journals A Primer on Design Aspects and Recent Advances in Shuffle Exchange Multistage Interconnection Networks

Symmetry ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 378
Author(s):  
Oluwatosin Ahmed Amodu ◽  
Mohamed Othman ◽  
Nur Arzilawati Md Yunus ◽  
Zurina Mohd Hanapi

Interconnection networks provide an effective means by which components of a system such as processors and memory modules communicate to provide reliable connectivity. This facilitates the realization of a highly efficient network design suitable for computational-intensive applications. Particularly, the use of multistage interconnection networks has unique advantages as the addition of extra stages helps to improve the network performance. However, this comes with challenges and trade-offs, which motivates researchers to explore various design options and architectural models to improve on its performance. A particular class of these networks is shuffle exchange network (SEN) which involves a symmetric N-input and N-output architecture built in stages of N/2 switching elements each. This paper presents recent advances in multistage interconnection networks with emphasis on SENs while discussing pertinent issues related to its design aspects, and taking lessons from the past and current literature. To achieve this objective, applications, motivating factors, architectures, shuffle exchange networks, and some of the performance evaluation techniques as well as their merits and demerits are discussed. Then, to capture the latest research trends in this area not covered in contemporary literature, this paper reviews very recent advancements in shuffle exchange multistage interconnection networks within the last few years and provides design guidelines as well as recommendations for future consideration.

2009 ◽  
Vol 01 (02) ◽  
pp. 267-281 ◽  
Author(s):  
JAMES K. LAN ◽  
WELL Y. CHOU ◽  
CHIUYUAN CHEN

The shuffle-exchange network has been proposed as a popular architecture for multistage interconnection networks. In 1991, Padmanabhan introduced the generalized shuffle-exchange network (GSEN) and proposed an efficient routing algorithm. Later, Chen et al. further enhanced the GSEN with bidirectional links and proposed the bidirectional GSEN (BGSEN). A BGSEN consists of the forward and the backward network. Based on the idea of inversely using the control tag generated by Padmanabhan's algorithm, Chen et al. proposed a routing algorithm for the backward network. Recently, Chen and Lou also proposed a routing algorithm for the backward network. It should be noted, however, that Padmanabhan's algorithm is actually an explicit formula for computing the control tag for routing and takes only O(1) time. Neither the algorithm of Chen et al. nor the algorithm of Chen and Lou provides an explicit formula for computing the control tag for routing and both algorithms take at least Ω(n) time, where n + 1 is the number of stages in the BGSEN. This paper attempts to propose an explicit formula for computing the control tag for routing in the backward network. We will demonstrate how this formula greatly simplifies the computation process and how it leads to efficient routing algorithms. In particular, an O(1)-time one-to-one routing algorithm and an efficient routing-table construction algorithm have been proposed.


Author(s):  
John Tzilivakis ◽  
Kathleen Lewis ◽  
Andrew Green ◽  
Douglas Warner

Purpose – In order to achieve reductions in greenhouse gas (GHG) emissions, it is essential that all industry sectors have the appropriate knowledge and tools to contribute. This includes agriculture, which is considered to contribute about a third of emissions globally. This paper reports on one such tool: IMPACCT: Integrated Management oPtions for Agricultural Climate Change miTigation. The paper aims to discuss these issues. Design/methodology/approach – IMPACCT focuses on GHGs, carbon sequestration and associated mitigation options. However, it also attempts to include information on economic and other environmental impacts in order to provide a more holistic perspective. The model identifies mitigation options, likely economic impacts and any synergies and trade-offs with other environmental objectives. The model has been applied on 22 case study farms in seven Member States. Findings – The tool presents some useful concepts for developing carbon calculators in the future. It has highlighted that calculators need to evolve from simply calculating emissions to identifying cost-effective and integrated emissions reduction options. Practical implications – IMPACCT has potential to become an effective means of provided targeted guidance, as part of a broader knowledge transfer programme based on an integrated suite of guidance, tools and advice delivered via different media. Originality/value – IMPACCT is a new model that demonstrates how to take a more integrated approach to mitigating GHGs on farms across Europe. It is a holistic carbon calculator that presents mitigation options in the context other environmental and economic objectives in the search for more sustainable methods of food production.


2021 ◽  
Author(s):  
Karthik K ◽  
Sudarson Jena ◽  
Venu Gopal T

Abstract A Multiprocessor is a system with at least two processing units sharing access to memory. The principle goal of utilizing a multiprocessor is to process the undertakings all the while and support the system’s performance. An Interconnection Network interfaces the various handling units and enormously impacts the exhibition of the whole framework. Interconnection Networks, also known as Multi-stage Interconnection Networks, are node-to-node links in which each node may be a single processor or a group of processors. These links transfer information from one processor to the next or from the processor to the memory, allowing the task to be isolated and measured equally. Hypercube systems are a kind of system geography used to interconnect various processors with memory modules and precisely course the information. Hypercube systems comprise of 2n nodes. Any Hypercube can be thought of as a graph with nodes and edges, where a node represents a processing unit and an edge represents a connection between the processors to transmit. Degree, Speed, Node coverage, Connectivity, Diameter, Reliability, Packet loss, Network cost, and so on are some of the different system scales that can be used to measure the performance of Interconnection Networks. A portion of the variations of Hypercube Interconnection Networks include Hypercube Network, Folded Hypercube Network, Multiple Reduced Hypercube Network, Multiply Twisted Cube, Recursive Circulant, Exchanged Crossed Cube Network, Half Hypercube Network, and so forth. This work assesses the performing capability of different variations of Hypercube Interconnection Networks. A group of properties is recognized and a weight metric is structured utilizing the distinguished properties to assess the performance exhibition. Utilizing this weight metric, the performance of considered variations of Hypercube Interconnection Networks is evaluated and summed up to recognize the effective variant. A compact survey of a portion of the variations of Hypercube systems, geographies, execution measurements, and assessment of the presentation are examined in this paper. Degree and Diameter are considered to ascertain the Network cost. On the off chance that Network Cost is considered as the measurement to assess the exhibition, Multiple Reduced Hypercube stands ideal with its lower cost. Notwithstanding it, on the off chance that we think about some other properties/ scales/metrics to assess the performance, any variant other than MRH may show considerably more ideal execution. The considered properties probably won't be ideally adequate to assess the effective performance of Hypercube variations in all respects. On the off chance that a sensibly decent number of properties are utilized to assess the presentation, a proficient variation of Hypercube Interconnection Network can be distinguished for a wide scope of uses. This is the inspiration to do this research work.


2021 ◽  
Vol 14 (5) ◽  
pp. 785-798
Author(s):  
Daokun Hu ◽  
Zhiwen Chen ◽  
Jianbing Wu ◽  
Jianhua Sun ◽  
Hao Chen

Persistent memory (PM) is increasingly being leveraged to build hash-based indexing structures featuring cheap persistence, high performance, and instant recovery, especially with the recent release of Intel Optane DC Persistent Memory Modules. However, most of them are evaluated on DRAM-based emulators with unreal assumptions, or focus on the evaluation of specific metrics with important properties sidestepped. Thus, it is essential to understand how well the proposed hash indexes perform on real PM and how they differentiate from each other if a wider range of performance metrics are considered. To this end, this paper provides a comprehensive evaluation of persistent hash tables. In particular, we focus on the evaluation of six state-of-the-art hash tables including Level hashing, CCEH, Dash, PCLHT, Clevel, and SOFT, with real PM hardware. Our evaluation was conducted using a unified benchmarking framework and representative workloads. Besides characterizing common performance properties, we also explore how hardware configurations (such as PM bandwidth, CPU instructions, and NUMA) affect the performance of PM-based hash tables. With our in-depth analysis, we identify design trade-offs and good paradigms in prior arts, and suggest desirable optimizations and directions for the future development of PM-based hash tables.


Sign in / Sign up

Export Citation Format

Share Document