scholarly journals Feasibility Study of Using X-ray Tube and GMDH for Measuring Volume Fractions of Annular and Stratified Regimes in Three-Phase Flows

Symmetry ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 613
Author(s):  
Gholam Hossein Roshani ◽  
Peshawa Jammal Muhammad Ali ◽  
Shivan Mohammed ◽  
Robert Hanus ◽  
Lokman Abdulkareem ◽  
...  

In this paper, the feasibility of using an X-ray tube instead of radioisotope sources for measuring volume fractions of gas, oil, and water in two typical flow regimes of three-phase flows, namely, annular and stratified, is evaluated. This study’s proposed detection system is composed of an X-ray tube, a 1 inch × 1 inch NaI detector, and one Pyrex-glass pipe to model different volume fractions for two flow regimes, annular and stratified. Group method of data handling (GMDH), a powerful regression tool, was also implemented to analyze the obtained data. The obtained results in this work indicate that a simple system based on an X-ray tube and just one NaI detector could be a potential alternative to radioisotope-based systems for separate measurements of gas, oil, and water volume fractions in annular and stratified flow regimes of a three-phase flow.

Mathematics ◽  
2021 ◽  
Vol 9 (17) ◽  
pp. 2091
Author(s):  
Osman Taylan ◽  
Mohammad Amir Sattari ◽  
Imene Elhachfi Essoussi ◽  
Ehsan Nazemi

In this research, a methodology consisting of an X-ray tube, one Pyrex-glass pipe, and two NaI detectors was investigated to determine the type of flow regimes and volume fractions of gas-oil-water three-phase flows. Three prevalent flow patterns—namely annular, stratified, and homogenous—in various volume percentages—10% to 80% with the step of 10%—were simulated by MCNP-X code. After simulating all the states and collecting the signals, the Fast Fourier Transform (FFT) was used to convert the data to the frequency domain. The first and second dominant frequency amplitudes were extracted to be used as the inputs of neural networks. Three Radial Basis Function Neural Networks (RBFNN) were trained for determining the type of flow regimes and predicting gas and water volume fractions. The correct detection of all flow regimes and the determination of volume percentages with a Mean Relative Error (MRE) of less than 2.02% shows that the use of frequency characteristics in determining these important parameters can be very effective. Although X-ray radiation-based two-phase flowmeters have a lot of advantages over the radioisotope-based ones, they suffer from lower measurement accuracy. One reason might be that the X-ray multi-energy spectrum recorded in the detector has been analyzed in a simple way. It is worth mentioning that the X-ray sources generate multi-energy photons despite radioisotopes that generate single energy photons, therefore data analyzing of radioisotope sources would be easier than X-ray ones. As mentioned, one of the problems researchers have encountered is the lower measurement accuracy of the X-ray, radiation-based three-phase flowmeters. The aim of the present work is to resolve this problem by improving the precision of the X-ray, radiation-based three-phase flowmeter using artificial neural network (ANN) and feature extraction techniques.


Mathematics ◽  
2021 ◽  
Vol 9 (13) ◽  
pp. 1460
Author(s):  
Abdulaziz S. Alkabaa ◽  
Ehsan Nazemi ◽  
Osman Taylan ◽  
El Mostafa Kalmoun

To the best knowledge of the authors, in former studies in the field of measuring volume fraction of gas, oil, and water components in a three-phase flow using gamma radiation technique, the existence of a scale layer has not been considered. The formed scale layer usually has a higher density in comparison to the fluid flow inside the oil pipeline, which can lead to high photon attenuation and, consequently, reduce the measuring precision of three-phase flow meter. The purpose of this study is to present an intelligent gamma radiation-based, nondestructive technique with the ability to measure volume fraction of gas, oil, and water components in the annular regime of a three-phase flow independent of the scale layer. Since, in this problem, there are several unknown parameters, such as gas, oil, and water components with different amounts and densities and scale layers with different thicknesses, it is not possible to measure the volume fraction using a conventional gamma radiation system. In this study, a system including a 241Am-133Ba dual energy source and two transmission detectors was used. The first detector was located diametrically in front of the source. For the second detector, at first, a sensitivity investigation was conducted in order to find the optimum position. The four extracted signals in both detectors (counts under photo peaks of both detectors) were used as inputs of neural network, and volume fractions of gas and oil components were utilized as the outputs. Using the proposed intelligent technique, volume fraction of each component was predicted independent of the barium sulfate scale layer, with a maximum MAE error of 3.66%.


1998 ◽  
Vol 13 (01) ◽  
pp. 41-46
Author(s):  
R.B. Leggett ◽  
D.C. Borling ◽  
B.S. Powers ◽  
Khalid Shehata ◽  
Martin Halvorsen ◽  
...  

2004 ◽  
Vol 37 (6) ◽  
pp. 923-928 ◽  
Author(s):  
U. Kertzscher ◽  
G. Dimitroff ◽  
M. Binsteiner ◽  
K. Affeld ◽  
L. Goubergrits ◽  
...  

Author(s):  
Jose Zaghloul ◽  
Michael Adewumi ◽  
M. Thaddeus Ityokumbul

The transport of unprocessed gas streams in production and gathering pipelines is becoming more attractive for new developments, particularly those is less friendly enviroments such as deep offshore locations. Transporting gas, oil, and water together from wells in satellite fields to existing processing facilities reduces the investments required for expanding production. However, engineers often face several problems when designing these systems. These problems include reduced flow capacity, corrosion, emulsion, asphaltene or wax deposition, and hydrate formation. Engineers need a tool to understand how the fluids travel together, quantify the flow reduction in the pipe, and determine where, how much, and the type of liquid that would from in a pipe. The present work provides a fundamental understanding of the thermodynamics and hydrodynamic mechanisms of this type of flow. We present a model that couples complex hydrodynamic and thermodynamic models for describing the behavior of fluids traveling in near-horizontal pipes. The model incorporates: • A hydrodynamic formulation for three-phase flow in pipes. • A thermodynamic model capable of performing two-phase and three-phase flow calculations in an accurate, fast and reliable manner. • A new theoretical approach for determining flow pattern transitions in three-phase (gas-oil-water) flow, and closure models that effectively handle different three-phase flow patterns and their transitions. The unified two-fluid model developed herein is demonstrated to be capable of handling systems exhibiting two-phase (gas-water and gas-oil) and three-phase (gas-oil-water) flow. Model predictions were compared against field and experimental data with excellent matches. The hydrodynamic model allows: 1) the determination of flow reduction due to the condensation of liquid(s) in the pipe, 2) assessment of the potential for forming substances that might affect the integrity of the pipe, and 3) evaluation of the possible measures for improving the deliverability of the pipeline.


2014 ◽  
Vol 58 ◽  
pp. 57-71 ◽  
Author(s):  
Snehlata Shakya ◽  
Prabhat Munshi ◽  
M. Behling ◽  
A. Luke ◽  
D. Mewes

Sign in / Sign up

Export Citation Format

Share Document