scholarly journals A Self-Organizing Area Coverage Method for Swarm Robots Based on Gradient and Grouping

Symmetry ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 680
Author(s):  
Qiuzhen Wang ◽  
Hai Zhang

The openness of the environment brings great challenges to the swarm robotic system to cover the task area quickly and effectively. In this paper, a coverage method based on gradient and grouping (GGC) is proposed. What is novel about our proposed solution is that it is suitable for extremely simple robots that lack computing or storage power. Through the change of the robot gradient, the swarm robot system with very simple functions can effectively self-organize to cover the unknown task area. By grouping the swarm robots, each group can cover the task area in parallel, which greatly improves the coverage speed. We verified our proposed method through experimental simulation and found that the gradient and grouping-based method in this paper was superior to other methods in terms of coverage, coverage completion time, and other aspects. Simultaneously, the robustness of the proposed method is analyzed and admirable experimental results are obtained. Because the applicable robot is very simple, the method in this paper can be applied to the submillimeter swarm robot system, which will lay the foundation for micro medicine.

2019 ◽  
pp. 1192-1219
Author(s):  
Prithviraj Dasgupta ◽  
Taylor Whipple ◽  
Ke Cheng

This paper examines the problem of distributed coverage of an initially unknown environment using a multi-robot system. Specifically, focus is on a coverage technique for coordinating teams of multiple mobile robots that are deployed and maintained in a certain formation while covering the environment. The technique is analyzed theoretically and experimentally to verify its operation and performance within the Webots robot simulator, as well as on physical robots. Experimental results show that the described coverage technique with robot teams moving in formation can perform comparably with a technique where the robots move individually while covering the environment. The authors also quantify the effect of various parameters of the system, such as the size of the robot teams, the presence of localization, and wheel slip noise, as well as environment related features like the size of the environment and the presence of obstacles and walls on the performance of the area coverage operation.


2019 ◽  
Vol 31 (4) ◽  
pp. 520-525 ◽  
Author(s):  
Toshiyuki Yasuda ◽  
Kazuhiro Ohkura ◽  
◽  

Swarm robotic systems (SRSs) are a type of multi-robot system in which robots operate without any form of centralized control. The typical design methodology for SRSs comprises a behavior-based approach, where the desired collective behavior is obtained manually by designing the behavior of individual robots in advance. In contrast, in an automatic design approach, a certain general methodology is adopted. This paper presents a deep reinforcement learning approach for collective behavior acquisition of SRSs. The swarm robots are expected to collect information in parallel and share their experience for accelerating their learning. We conducted real swarm robot experiments and evaluated the learning performance of the swarm in a scenario where the robots consecutively traveled between two landmarks.


2011 ◽  
Vol 2 (1) ◽  
pp. 44-69 ◽  
Author(s):  
Prithviraj Dasgupta ◽  
Taylor Whipple ◽  
Ke Cheng

This paper examines the problem of distributed coverage of an initially unknown environment using a multi-robot system. Specifically, focus is on a coverage technique for coordinating teams of multiple mobile robots that are deployed and maintained in a certain formation while covering the environment. The technique is analyzed theoretically and experimentally to verify its operation and performance within the Webots robot simulator, as well as on physical robots. Experimental results show that the described coverage technique with robot teams moving in formation can perform comparably with a technique where the robots move individually while covering the environment. The authors also quantify the effect of various parameters of the system, such as the size of the robot teams, the presence of localization, and wheel slip noise, as well as environment related features like the size of the environment and the presence of obstacles and walls on the performance of the area coverage operation.


Author(s):  
Prithviraj Dasgupta ◽  
Taylor Whipple ◽  
Ke Cheng

This paper examines the problem of distributed coverage of an initially unknown environment using a multi-robot system. Specifically, focus is on a coverage technique for coordinating teams of multiple mobile robots that are deployed and maintained in a certain formation while covering the environment. The technique is analyzed theoretically and experimentally to verify its operation and performance within the Webots robot simulator, as well as on physical robots. Experimental results show that the described coverage technique with robot teams moving in formation can perform comparably with a technique where the robots move individually while covering the environment. The authors also quantify the effect of various parameters of the system, such as the size of the robot teams, the presence of localization, and wheel slip noise, as well as environment related features like the size of the environment and the presence of obstacles and walls on the performance of the area coverage operation.


Author(s):  
Haibo Feng ◽  
Yanwu Zhai ◽  
Yili Fu

Purpose Surgical robot systems have been used in single-port laparoscopy (SPL) surgery to improve patient outcomes. This study aims to develop a vision robot system for SPL surgery to effectively improve the visualization of surgical robot systems for relatively complex surgical procedures. Design/methodology/approach In this paper, a new master-slave magnetic anchoring vision robotic system for SPL surgery was proposed. A lighting distribution analysis for the imaging unit of the vision robot was carried out to guarantee illumination uniformity in the workspace during SPL surgery. Moreover, cleaning force for the lens of the camera was measured to assess safety for an abdominal wall, and performance assessment of the system was performed. Findings Extensive experimental results for illumination, control, cleaning force and functionality test have indicated that the proposed system has an excellent performance in providing the visual feedback. Originality/value The main contribution of this paper lies in the development of a magnetic anchoring vision robot system that successfully improves the ability of cleaning the lens and avoiding the blind area in a field of view.


2021 ◽  
Vol 50 (1) ◽  
pp. 5-12
Author(s):  
Hani Alquhayz ◽  
Mahdi Jemmali

This paper focuses on the maximization of the minimum completion time on identical parallel processors. The objective of this maximization is to ensure fair distribution. Let a set of jobs to be assigned to several identical parallel processors. This problem is shown as NP-hard. The research work of this paper is based essentially on the comparison of the proposed heuristics with others cited in the literature review. Our heuristics are developed using essentially the randomization method and the iterative utilization of the knapsack problem to solve the studied problem. Heuristics are assessed by several instances represented in the experimental results. The results show that the knapsack based heuristic gives almost a similar performance than heuristic in a literature review but in better running time.  


Author(s):  
Ryota SUZUKI ◽  
Yoshito OKADA ◽  
Haruhiko ETO ◽  
Kazunori OHNO ◽  
Kenjiro TADAKUMA ◽  
...  
Keyword(s):  

Author(s):  
Toshio FUKUDA ◽  
Guoqing XUE ◽  
Fumihito ARAI ◽  
Kazuhiro KOSUGE ◽  
Hajime ASAMA ◽  
...  

Sensors ◽  
2020 ◽  
Vol 20 (11) ◽  
pp. 3215 ◽  
Author(s):  
M. A. Viraj J. Muthugala ◽  
Anh Vu Le ◽  
Eduardo Sanchez Cruz ◽  
Mohan Rajesh Elara ◽  
Prabakaran Veerajagadheswar ◽  
...  

Regular dry dock maintenance work on ship hulls is essential for maintaining the efficiency and sustainability of the shipping industry. Hydro blasting is one of the major processes of dry dock maintenance work, where human labor is extensively used. The conventional methods of maintenance work suffer from many shortcomings, and hence robotized solutions have been developed. This paper proposes a novel robotic system that can synthesize a benchmarking map for a previously blasted ship hull. A Self-Organizing Fuzzy logic (SOF) classifier has been developed to benchmark the blasting quality of a ship hull similar to blasting quality categorization done by human experts. Hornbill, a multipurpose inspection and maintenance robot intended for hydro blasting, benchmarking, and painting, has been developed by integrating the proposed SOF classifier. Moreover, an integrated system solution has been developed to improve dry dock maintenance of ship hulls. The proposed SOF classifier can achieve a mean accuracy of 0.9942 with an execution time of 8.42 µs. Realtime experimenting with the proposed robotic system has been conducted on a ship hull. This experiment confirms the ability of the proposed robotic system in synthesizing a benchmarking map that reveals the benchmarking quality of different areas of a previously blasted ship hull. This sort of a benchmarking map would be useful for ensuring the blasting quality as well as performing efficient spot wise reblasting before the painting. Therefore, the proposed robotic system could be utilized for improving the efficiency and quality of hydro blasting work on the ship hull maintenance industry.


Sign in / Sign up

Export Citation Format

Share Document