Effects of Multi-Robot Team Formations on Distributed Area Coverage

2011 ◽  
Vol 2 (1) ◽  
pp. 44-69 ◽  
Author(s):  
Prithviraj Dasgupta ◽  
Taylor Whipple ◽  
Ke Cheng

This paper examines the problem of distributed coverage of an initially unknown environment using a multi-robot system. Specifically, focus is on a coverage technique for coordinating teams of multiple mobile robots that are deployed and maintained in a certain formation while covering the environment. The technique is analyzed theoretically and experimentally to verify its operation and performance within the Webots robot simulator, as well as on physical robots. Experimental results show that the described coverage technique with robot teams moving in formation can perform comparably with a technique where the robots move individually while covering the environment. The authors also quantify the effect of various parameters of the system, such as the size of the robot teams, the presence of localization, and wheel slip noise, as well as environment related features like the size of the environment and the presence of obstacles and walls on the performance of the area coverage operation.

2019 ◽  
pp. 1192-1219
Author(s):  
Prithviraj Dasgupta ◽  
Taylor Whipple ◽  
Ke Cheng

This paper examines the problem of distributed coverage of an initially unknown environment using a multi-robot system. Specifically, focus is on a coverage technique for coordinating teams of multiple mobile robots that are deployed and maintained in a certain formation while covering the environment. The technique is analyzed theoretically and experimentally to verify its operation and performance within the Webots robot simulator, as well as on physical robots. Experimental results show that the described coverage technique with robot teams moving in formation can perform comparably with a technique where the robots move individually while covering the environment. The authors also quantify the effect of various parameters of the system, such as the size of the robot teams, the presence of localization, and wheel slip noise, as well as environment related features like the size of the environment and the presence of obstacles and walls on the performance of the area coverage operation.


Author(s):  
Prithviraj Dasgupta ◽  
Taylor Whipple ◽  
Ke Cheng

This paper examines the problem of distributed coverage of an initially unknown environment using a multi-robot system. Specifically, focus is on a coverage technique for coordinating teams of multiple mobile robots that are deployed and maintained in a certain formation while covering the environment. The technique is analyzed theoretically and experimentally to verify its operation and performance within the Webots robot simulator, as well as on physical robots. Experimental results show that the described coverage technique with robot teams moving in formation can perform comparably with a technique where the robots move individually while covering the environment. The authors also quantify the effect of various parameters of the system, such as the size of the robot teams, the presence of localization, and wheel slip noise, as well as environment related features like the size of the environment and the presence of obstacles and walls on the performance of the area coverage operation.


2019 ◽  
Vol 39 (3) ◽  
pp. 422-431 ◽  
Author(s):  
Bassem Hichri ◽  
Lounis Adouane ◽  
Jean-Christophe Fauroux ◽  
Youcef Mezouar ◽  
Ioan Doroftei

Purpose The purpose of this paper is to address optimal positioning of a group of mobile robots for a successful manipulation and transportation of payloads of any shape. Design/methodology/approach The chosen methodology to achieve optimal positioning of the robots around the payload to lift it and to transport it while maintaining a geometric multi-robot formation is presented. This appropriate configuration of the set of robots is obtained by combining constraints ensuring stable and safe lifting and transport of the payload. A suitable control law is then used to track a virtual structure in which each elementary robot has to keep its desired position with respect to the payload. Findings An optimal positioning of mobile robots around a payload to ensure stable co-manipulation and transportation task according to stability multi-criteria constraints. Simulation and experimental results validate the proposed control architecture and strategy for a successful transportation task based on virtual structure navigation approach. Originality/value This paper presents a new strategy for co-manipulation and co-transportation task based on a virtual structure navigation approach. An algorithm for optimal positioning of mobile robots around a payload of any mass and shape is proposed while ensuring stability during the whole process by respecting multi-criteria task stability constraints.


2019 ◽  
Vol 112 ◽  
pp. 32-48 ◽  
Author(s):  
João Paulo Lima Silva de Almeida ◽  
Renan Taizo Nakashima ◽  
Flávio Neves-Jr ◽  
Lúcia Valéria Ramos de Arruda

Robotica ◽  
2020 ◽  
pp. 1-20 ◽  
Author(s):  
Wencen Wu ◽  
Jie You ◽  
Yufei Zhang ◽  
Mingchen Li ◽  
Kun Su

SUMMARY In this article, we investigate the problem of parameter identification of spatial–temporal varying processes described by a general nonlinear partial differential equation and validate the feasibility and robustness of the proposed algorithm using a group of coordinated mobile robots equipped with sensors in a realistic diffusion field. Based on the online parameter identification method developed in our previous work using multiple mobile robots, in this article, we first develop a parameterized model that represents the nonlinear spatially distributed field, then develop a parameter identification scheme consisting of a cooperative Kalman filter and recursive least square method. In the experiments, we focus on the diffusion field and consider the realistic scenarios that the diffusion field contains obstacles and hazard zones that the robots should avoid. The identified parameters together with the located source could potentially assist in the reconstruction and monitoring of the field. To validate the proposed methods, we generate a controllable carbon dioxide (CO2) field in our laboratory and build a static CO2 sensor network to measure and calibrate the field. With the reconstructed realistic diffusion field measured by the sensor network, a multi-robot system is developed to perform the parameter identification in the field. The results of simulations and experiments show satisfactory performance and robustness of the proposed algorithms.


2014 ◽  
Vol 511-512 ◽  
pp. 827-833 ◽  
Author(s):  
Martin Vondráček ◽  
Martin Dekan ◽  
František Duchoň ◽  
Stanislav Števo

The aim of this article is proposal and implementation of the multi-robot system for mapping of the unknown environment. For the localization of each robot, simple odometry was used. Navigation of the robots is based on algorithm similar to bug algorithms. Communication between robots is based on polling. The system was implemented on the platform iRobot Create. Practical experiments have proven that multi-robot system for mapping of the unknown environment is faster and more reliable than single robot system.


Electronics ◽  
2019 ◽  
Vol 8 (3) ◽  
pp. 298 ◽  
Author(s):  
Jyun-Yu Jhang ◽  
Cheng-Jian Lin ◽  
Kuu-Young Young

This study provides an effective cooperative carrying and navigation control method for mobile robots in an unknown environment. The manager mode switches between two behavioral control modes—wall-following mode (WFM) and toward-goal mode (TGM)—based on the relationship between the mobile robot and the unknown environment. An interval type-2 fuzzy neural controller (IT2FNC) based on a dynamic group differential evolution (DGDE) is proposed to realize the carrying control and WFM control for mobile robots. The proposed DGDE uses a hybrid method that involves a group concept and an improved differential evolution to overcome the drawbacks of the traditional differential evolution algorithm. A reinforcement learning strategy was adopted to develop an adaptive WFM control and achieve cooperative carrying control for mobile robots. The experimental results demonstrated that the proposed DGDE is superior to other algorithms at using WFM control. Moreover, the experimental results demonstrate that the proposed method can complete the task of cooperative carrying, and can realize navigation control to enable the robot to reach the target location.


2020 ◽  
Vol 132 ◽  
pp. 103604
Author(s):  
Ertug Olcay ◽  
Fabian Schuhmann ◽  
Boris Lohmann

Sign in / Sign up

Export Citation Format

Share Document