scholarly journals Node Selection Algorithm for Network Coding in the Mobile Wireless Network

Symmetry ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 842
Author(s):  
Dexia Jiang ◽  
Leilei Li

In the multicast network, network coding has proven to be an effective technique to approach maximum flow capacity. Although network coding has the advantage of improving performance, encoding nodes increases the cost and delay in wireless networks. Therefore, minimizing encoding nodes is of great significance to improve the actual network’s performance under a maximum multicast flow. This paper seeks to achieve partial improvements in the existing selection algorithm of encoding nodes in wireless networks. Firstly, the article gives the condition for an intermediate node to be an encoding node. Secondly, a maximum flow algorithm, which depends on the depth-first search method, is proposed to optimize the search time by selecting the larger augmentation flow in each step. Finally, we construct a random graph model to simulate the wireless network and the maximum multicast flow algorithm to analyze the statistical characteristics of encoding nodes. This paper aims at the optimization to find the minimal number of required coding nodes which means the minimum energy consumption. Meanwhile, the simulations indicate that the curve of coding nodes tends to be a geometric distribution, and that the curve of the maximum flow tends to be symmetric as the network scale and the node covering radius increase.

2010 ◽  
pp. 1473-1487
Author(s):  
Qunwei Zheng ◽  
Xiaoyan Hong ◽  
Jun Liu ◽  
Lei Tang

A multi-hop wireless network with highly dynamic members and mobility is vulnerable to many attacks. To address this problem, we propose a novel time-based approach that exploits mobility. In our scheme, the source sends shares at different times. Due to node mobility, these shares will be routed through different intermediate nodes. It is highly unlikely that a particular intermediate node is able to be on many of these routes and to collect enough shares to reconstruct the original message. The scheme is particularly suitable for applications that can tolerate long message delays, as studied in Delay Tolerant Networks. The article focuses on analyzing the feasibility of this scheme. We describe a general approach to calculate the probability of intercepting enough shares by arbitrary nodes, together with simulations. The results show that the probability is small. The scheme provides a valuable alternative for delay tolerant applications to enhance message confidentiality.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Huifang Yu ◽  
Zhewei Qi ◽  
Danqing Liu ◽  
Ke Yang

Network coding can save the wireless network resources and improve the network throughput by combining the routing with coding. Traditional multisignature from certificateless cryptosystem is not suitable for the network coding environment. In this paper, we propose a certificateless multisignature scheme suitable for network coding (NC-CLMSS) by using the sequential multisignature and homomorphic hash function. NC-CLMSS is based on the CDH and ECDL problems, and its security is detailedly proved in the random oracle (RO) model. In NC-CLMSS, the source node generates a multisignature for the message, and the intermediate node linearly combines the receiving message. NC-CLMSS can resist the pollution and forgery attacks, and it has the fixed signature length and relatively high computation efficiency.


Author(s):  
Qunwei Zheng ◽  
Xiaoyan Hong ◽  
Jun Liu ◽  
Lei Tang

A multi-hop wireless network with highly dynamic members and mobility is vulnerable to many attacks. To address this problem, we propose a novel time-based approach that exploits mobility. In our scheme, the source sends shares at different times. Due to node mobility, these shares will be routed through different intermediate nodes. It is highly unlikely that a particular intermediate node is able to be on many of these routes and to collect enough shares to reconstruct the original message. The scheme is particularly suitable for applications that can tolerate long message delays, as studied in Delay Tolerant Networks. The article focuses on analyzing the feasibility of this scheme. We describe a general approach to calculate the probability of intercepting enough shares by arbitrary nodes, together with simulations. The results show that the probability is small. The scheme provides a valuable alternative for delay tolerant applications to enhance message confidentiality.


2014 ◽  
Vol 529 ◽  
pp. 721-725
Author(s):  
Feng Jun Shang ◽  
Zhe Geng

In order to improve the performance of multi-hop wireless network, network coding mixes multiple signals in a single channel. A coding scheme proposed previously which is called BEND is a very compelling network coding applications. While it is another way of such programs, but there is still great potential to be developed. This article, based on BEND, expands the width of the potential paths by asking more potential nodes to join so that it increases network throughput and reduces the transmission delay at the same time. It is not a right way neither in theory nor in practical application that increasing the width of the paths unlimitedly by progressive approach. So the best paths width, as well as the network parameters which affecting the paths width is discussed in the final part of this article.


2018 ◽  
Vol 12 ◽  
pp. 25-41
Author(s):  
Matthew C. FONTAINE

Among the most interesting problems in competitive programming involve maximum flows. However, efficient algorithms for solving these problems are often difficult for students to understand at an intuitive level. One reason for this difficulty may be a lack of suitable metaphors relating these algorithms to concepts that the students already understand. This paper introduces a novel maximum flow algorithm, Tidal Flow, that is designed to be intuitive to undergraduate andpre-university computer science students.


2020 ◽  
Vol 64 (4) ◽  
pp. 40412-1-40412-11
Author(s):  
Kexin Bai ◽  
Qiang Li ◽  
Ching-Hsin Wang

Abstract To address the issues of the relatively small size of brain tumor image datasets, severe class imbalance, and low precision in existing segmentation algorithms for brain tumor images, this study proposes a two-stage segmentation algorithm integrating convolutional neural networks (CNNs) and conventional methods. Four modalities of the original magnetic resonance images were first preprocessed separately. Next, preliminary segmentation was performed using an improved U-Net CNN containing deep monitoring, residual structures, dense connection structures, and dense skip connections. The authors adopted a multiclass Dice loss function to deal with class imbalance and successfully prevented overfitting using data augmentation. The preliminary segmentation results subsequently served as the a priori knowledge for a continuous maximum flow algorithm for fine segmentation of target edges. Experiments revealed that the mean Dice similarity coefficients of the proposed algorithm in whole tumor, tumor core, and enhancing tumor segmentation were 0.9072, 0.8578, and 0.7837, respectively. The proposed algorithm presents higher accuracy and better stability in comparison with some of the more advanced segmentation algorithms for brain tumor images.


2015 ◽  
Vol 14 (6) ◽  
pp. 5809-5813
Author(s):  
Abhishek Prabhakar ◽  
Amod Tiwari ◽  
Vinay Kumar Pathak

Wireless security is the prevention of unauthorized access to computers using wireless networks .The trends in wireless networks over the last few years is same as growth of internet. Wireless networks have reduced the human intervention for accessing data at various sites .It is achieved by replacing wired infrastructure with wireless infrastructure. Some of the key challenges in wireless networks are Signal weakening, movement, increase data rate, minimizing size and cost, security of user and QoS (Quality of service) parameters... The goal of this paper is to minimize challenges that are in way of our understanding of wireless network and wireless network performance.


Sign in / Sign up

Export Citation Format

Share Document