scholarly journals Behavior of the Free Surface of Two-Phase Fluid Flow Near the Taphole in a Tank

Symmetry ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 875
Author(s):  
Hyun-Sik Yoon ◽  
Kyung-Min Park

The present study numerically investigated the deformation of the free-surface of two-phase fluid flow in a tank which is considered as a simplified blast furnace hearth. Actually, the fluids existing in a blast furnace hearth are gas, slag and hot metal from top to bottom. However, the present study considered only gas and cold molten iron in the tank. The porosity is considered as a substitute for void volume formed by the packed bed of the particles such as cokes. The single-phase flow and two-phase fluids flow without the porosity are analyzed for comparison. The porosity contributed the free surface to forming a viscous finger near the taphole. The axi-symmetry nature of the interface of two-phase fluids flow in the cylindrical tank is broken by viscous finger as the interface instability by the gas entrainment into taphole, which has been identified by the visualization of the free surface formation. The acceleration of the free surface falling velocity and the outflow near the taphole are associated by the viscous finger by the gas entrainment. The dimensionless gas break-through time is linear with respect to the porosity magnitude.

2017 ◽  
Vol 24 (2) ◽  
pp. 130-138 ◽  
Author(s):  
Yan-xiang Liu ◽  
Jian-liang Zhang ◽  
Zhi-yu Wang ◽  
Ke-xin Jiao ◽  
Guo-hua Zhang ◽  
...  

2010 ◽  
Vol 41 (4) ◽  
pp. 876-885 ◽  
Author(s):  
Bao-Yu Guo ◽  
Paul Zulli ◽  
Daniel Maldonado ◽  
Ai-Bing Yu

Metals ◽  
2018 ◽  
Vol 8 (9) ◽  
pp. 665 ◽  
Author(s):  
Ying Li ◽  
Lei Zan ◽  
Yao Ge ◽  
Han Wei ◽  
Zhenghao Zhang ◽  
...  

The state of a blast furnace hearth, especially the liquid level of hot metal and slag during the tapping process, is of crucial importance with respect to a long campaign blast furnace. In practice, the state of the hearth is evaluated mainly by the experience of operators. In this paper, the electromotive force (EMF) is used to monitor the liquid level of a laboratory scale of blast furnace hearth and the effect of liquid level, EMF sensors position and the thickness of refractory on EMF signals are tested using a single layer of water and double layers of water and oil. After laboratory experiments, the electromotive force (EMF) is used to monitor the liquid level of torpedo ladle successfully. Laboratory experimental results show that the change in liquid level can be characterized by EMF signal. The state of liquid surface and local thermal state cause the EMF signal to vary in the circumferential direction of the vessel. Furthermore, the EMF signal magnitude decreases with the decrease of the thickness of the graphite crucible. Finally, the main conclusions of the laboratory experiment are supported by the torpedo ladle experiment.


Sign in / Sign up

Export Citation Format

Share Document