scholarly journals New Method for Calculation of Radiation Defect Dipole Tensor and Its Application to Di-Interstitials in Copper

Symmetry ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1154
Author(s):  
Dmitry N. Demidov ◽  
Alexander B. Sivak ◽  
Polina A. Sivak

The effect of external and internal elastic strain fields on the anisotropic diffusion of radiation defects (RDs) can be taken into account if one knows the dipole tensor of saddle-point configurations of the diffusing RDs. It is usually calculated by molecular statics, since the insufficient accuracy of the available experimental techniques makes determining it experimentally difficult. However, for an RD with multiple crystallographically non-equivalent metastable and saddle-point configurations (as in the case of di-interstitials), the problem becomes practically unsolvable due to its complexity. In this paper, we used a different approach to solving this problem. The molecular dynamics (MD) method was used to calculate the strain dependences of the RD diffusion tensor for various types of strain states. These dependences were used to determine the dipole tensor of the effective RD saddle-point configuration, which takes into account the contributions of all real saddle-point configurations. The proposed approach was used for studying the diffusion characteristics of RDs, such as di-interstitials in FCC copper (used in plasma-facing components of fusion reactors under development). The effect of the external elastic field on the MD-calculated normalized diffusion tensor (ratio of the diffusion tensor to a third of its trace) of di-interstitials was fully consistent with analytical predictions based on the kinetic theory, the parameters of which were the components of the dipole tensors, including the range of non-linear dependence of the diffusion tensor on strains. The results obtained allowed for one to simulate the anisotropic diffusion of di-interstitials in external and internal elastic fields, and to take into account the contribution of di-interstitials to the radiation deformation of crystals. This contribution can be significant, as MD data on the primary radiation damage in copper shows that ~20% of self-interstitial atoms produced by cascades of atomic collisions are combined into di-interstitials.

2012 ◽  
Vol 750 (2) ◽  
pp. 108 ◽  
Author(s):  
F. Effenberger ◽  
H. Fichtner ◽  
K. Scherer ◽  
S. Barra ◽  
J. Kleimann ◽  
...  

1986 ◽  
Vol 53 (1) ◽  
pp. 103-107 ◽  
Author(s):  
E. Tsuchida ◽  
T. Mura ◽  
J. Dundurs

The paper analyzes the elastic fields caused by an elliptic inclusion which undergoes a uniform expansion. The interface between the inclusion and the matrix cannot sustain shear tractions and is free to slip. Papkovich–Neuber displacement potentials are used to solve the problem. In contrast to the perfectly bonded interface, the solution cannot be expressed in closed form and involves infinite series. The results are illustrated by numerical examples.


Author(s):  
Dimitrios C. Karampinos ◽  
Robert Dawe ◽  
Konstantinos Arfanakis ◽  
John G. Georgiadis

Diffusion Magnetic Resonance Imaging (diffusion MRI) can provide important information about tissue microstructure by probing the diffusion of water molecules in a biological tissue. Although originally proposed for the characterization of cerebral white matter connectivity and pathologies, its implementation has extended to many other areas of the human body. In a parallel development, a number of diffusion models have been proposed in order to extract the underlying tissue microstructural properties from the diffusion MRI signal. The present study reviews the basic considerations that have to be taken into account in the selection of the diffusion encoding parameters in diffusion MRI acquisition. Both diffusion tensor imaging (DTI) and high-order schemes are reviewed. The selection of these parameters relies strongly on requirements of the adopted diffusion model and the diffusion characteristics of the tissue under study. The authors review several successful parameter selection strategies for the imaging of the human brain, and conclude with the basics of parameter optimization on promising applications of the technique on other tissues, such as the spinal cord, the myocardium, and the skeletal muscles.


CNS Spectrums ◽  
2002 ◽  
Vol 7 (7) ◽  
pp. 535-542
Author(s):  
Xiaoming Li ◽  
Xavier Leclerc ◽  
Thierry Huisman ◽  
A. Gregory Sorensen

ABSTRACTDiffusion-weighted imaging (DWI) represents a relatively novel magnetic resonance imaging (MRI) technique in which image contrast is related to differences in translational motion of water molecules within the tissue, rather than to differences in total water content. The rate of water motion is characterized by the apparent diffusion coefficient. In addition, full tensor DWI (diffusion tensor imaging, DT-MRI) samples the full diffusion tensor and therefore allows estimation of isotropic and anisotropic diffusion. The degree of anisotropic diffusion is thought to be determined by the local tissue characteristics or tissue architecture and can be quantified by DT-MRI. DWI has proven its clinical effectiveness in the early detection of acute cerebral ischemia. Multiple reports have discussed the value of DWI in a wide variety of other diseases of the central nervous system. DT-MRI appears to be especially promising in the evaluation of diseases that affect the integrity of white matter, in particular of white matter tracts. Herein, the current applications of DWI in clinical neurology are reviewed, with special attention to applications of DT-MRI.


2012 ◽  
Vol 24 (10) ◽  
pp. 1971-1982 ◽  
Author(s):  
Isabelle S. Häberling ◽  
Gjurgjica Badzakova-Trajkov ◽  
Michael C. Corballis

We used diffusion tensor imaging to assess callosal morphology in 35 pairs of monozygotic twins, of which 17 pairs were concordant for handedness and 18 pairs were discordant for handedness. Functional hemispheric language dominance was established for each twin member using fMRI, resulting in 26 twin pairs concordant and 9 twin pairs discordant for language dominance. On the basis of genetic models of handedness and language dominance, which assume one “right shift” (RS) gene with two alleles, an RS+ allele biasing toward right-handedness and left cerebral language dominance and an RS− allele leaving both asymmetries to chance, all twins were classified according to their putative genotypes, and the possible effects of the gene on callosal morphology was assessed. Whereas callosal size was under a high genetic control that was independent of handedness and language dominance, twin pairs with a high probability of carrying the putative RS+ allele showed a connectivity pattern characterized by a genetically controlled, low anisotropic diffusion over the whole corpus callosum. In contrast, the high connectivity pattern exhibited by twin pairs more likely to lack the RS+ allele was under significantly less genetic influence. The data suggest that handedness and hemispheric dominance for speech production might be at least partly dependent on genetically controlled processes of axonal pruning in the corpus callosum.


1996 ◽  
Vol 53 (20) ◽  
pp. 13521-13527 ◽  
Author(s):  
Maylise Nastar ◽  
Vasily V. Bulatov ◽  
Sidney Yip

1997 ◽  
Vol 481 ◽  
Author(s):  
D. Orlikowski ◽  
C. Sagui ◽  
A. S. Somoza ◽  
C. Roland

ABSTRACTWe report on large-scale three-dimensional simulations of phase separation in model binary alloy systems in the presence of elastic fields. The elastic field has several important effects on the morphology of the system: the ordered domains are subject to shape transformations, and spatial ordering. In contrast to two-dimensional system, no significant slowing down in the growth is observed. There is also no evidence of any “reverse coarsening” of the domains.


1995 ◽  
Vol 62 (3) ◽  
pp. 579-584 ◽  
Author(s):  
Linzhi Wu ◽  
Shanyi Du

The displacement and stress fields caused by uniform eigenstrains in a circular cylindrical inclusion are analyzed inside the region x12+x22<a2,−∞<x3<∞ and are given in terms of nonsingular surface integrals. Analytical solutions can be expressed as functions of the complete elliptic integrals of the first, second and third kind. The corresponding elastic fields in the region x12+x22>a2,−∞<x3<∞ are solved by using the same technique (by Green’s functions) in the companion paper (Part II).


Sign in / Sign up

Export Citation Format

Share Document