Three-Dimensional Simulations of Phase Separation in Model Binary Alloy Systems with Elasticity

1997 ◽  
Vol 481 ◽  
Author(s):  
D. Orlikowski ◽  
C. Sagui ◽  
A. S. Somoza ◽  
C. Roland

ABSTRACTWe report on large-scale three-dimensional simulations of phase separation in model binary alloy systems in the presence of elastic fields. The elastic field has several important effects on the morphology of the system: the ordered domains are subject to shape transformations, and spatial ordering. In contrast to two-dimensional system, no significant slowing down in the growth is observed. There is also no evidence of any “reverse coarsening” of the domains.

1999 ◽  
Vol 580 ◽  
Author(s):  
Daniel Orlikowski ◽  
Celeste Sagui ◽  
Andrds Somoza ◽  
Christopher Roland

AbstractThe effects of long-range elastic fields on the phase separation process of three- dimensional binary alloy systems was investigated with large-scale Langevin simulations. The elastic effects incorporated in the model are the result of anisotropy and dilational misfits introduced via inhomogeneities in the elastic constants of the constituents. The domain morphology obtained is readily understandable in terms of selection criterion for the shape and/or orientation of the domains, and is based on the different shear moduli that are present in the system. Coarsening mechanisms were found to be a combination of the classical Ostwald ripening mechanism and the elastically-driven coalescence of domains. Other aspects of the coarsening process such as dynamic scaling of the structure function is presented.


1999 ◽  
Vol 59 (13) ◽  
pp. 8646-8659 ◽  
Author(s):  
Daniel Orlikowski ◽  
Celeste Sagui ◽  
Andrés Somoza ◽  
Christopher Roland

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
L. Orr ◽  
S. C. Chapman ◽  
J. W. Gjerloev ◽  
W. Guo

AbstractGeomagnetic substorms are a global magnetospheric reconfiguration, during which energy is abruptly transported to the ionosphere. Central to this are the auroral electrojets, large-scale ionospheric currents that are part of a larger three-dimensional system, the substorm current wedge. Many, often conflicting, magnetospheric reconfiguration scenarios have been proposed to describe the substorm current wedge evolution and structure. SuperMAG is a worldwide collaboration providing easy access to ground based magnetometer data. Here we show application of techniques from network science to analyze data from 137 SuperMAG ground-based magnetometers. We calculate a time-varying directed network and perform community detection on the network, identifying locally dense groups of connections. Analysis of 41 substorms exhibit robust structural change from many small, uncorrelated current systems before substorm onset, to a large spatially-extended coherent system, approximately 10 minutes after onset. We interpret this as strong indication that the auroral electrojet system during substorm expansions is inherently a large-scale phenomenon and is not solely due to many meso-scale wedgelets.


2018 ◽  
Vol 27 (10) ◽  
pp. 1844006
Author(s):  
A. Dorodnitsyn ◽  
T. Kallman

Large scale magnetic field can be easily dragged from galactic scales toward AGN along with accreting gas. There, it can contribute to both the formation of AGN “torus” and help to remove angular momentum from the gas which fuels AGN accretion disk. However the dynamics of such gas is also strongly influenced by the radiative feedback from the inner accretion disk. Here we present results from the three-dimensional simulations of pc-scale accretion which is exposed to intense X-ray heating.


2019 ◽  
Vol 141 (5) ◽  
Author(s):  
Feng Jie Zheng ◽  
Chao Yong Zong ◽  
William Dempster ◽  
Fu Zheng Qu ◽  
Xue Guan Song

Reservoir-pipe-valve (RPV) systems are widely used in many industrial processes. The pressure in an RPV system plays an important role in the safe operation of the system, especially during the sudden operations such as rapid valve opening or closing. To investigate the pressure response, with particular interest in the pressure fluctuations in an RPV system, a multidimensional and multiscale model combining the method of characteristics (MOC) and computational fluid dynamics (CFD) method is proposed. In the model, the reservoir is modeled as a zero-dimensional virtual point, the pipe is modeled as a one-dimensional system using the MOC, and the valve is modeled using a three-dimensional CFD model. An interface model is used to connect the multidimensional and multiscale model. Based on the model, a transient simulation of the turbulent flow in an RPV system is conducted in which not only the pressure fluctuation in the pipe but also the detailed pressure distribution in the valve is obtained. The results show that the proposed model is in good agreement when compared with a high fidelity CFD model used to represent both large-scale and small-scale spaces. As expected, the proposed model is significantly more computationally efficient than the CFD model. This demonstrates the feasibility of analyzing complex RPV systems within an affordable computational time.


2000 ◽  
Vol 62 (5) ◽  
pp. 3160-3168 ◽  
Author(s):  
Daniel Orlikowski ◽  
Celeste Sagui ◽  
Andrés M. Somoza ◽  
Christopher Roland

1999 ◽  
Vol 10 (01) ◽  
pp. 1-16 ◽  
Author(s):  
Y. S. CHOI ◽  
J. MACHTA ◽  
P. TAMAYO ◽  
L. X. CHAYES

A parallel version of the invaded cluster algorithm is described. Results from large scale (up to 40962 and 5123) simulations of the Ising model are reported. No evidence of critical slowing down is found for the three-dimensional Ising model. The magnetic exponent is estimated to be 2.482±0.001(β/ν=0.518±0.001) for the three-dimensional Ising model.


Author(s):  
Takahiro Kinoshita ◽  
Takashi Kawakami ◽  
Tatsuhiro Hori ◽  
Keiji Matsumoto ◽  
Sayuri Kohara ◽  
...  

Thermal conduction and mechanical strength around TSV (Through Silicon Via) structures of 3D SiP (Three Dimensional System in Package) were discussed both cases of with and without void in TSV by using a large scale simulator based on FEM, ADVENTURECluster® for ensuring the reliability of 3D SiP. In the results, the thermal performance that was required in 3D SiP was estimated to ensure the reliability. Simulations for thermal stresses around TSV structure in 3D SiP under thermal cycle condition due to power ON/OFF were carried out. In case that void was not in TSV, stresses in TSV were close to hydrostatic pressure and the magnitude of the equivalent stress was lower than the yield stress of copper. However, the level of the stresses, especially in Si chips, should not be negligible in inducing damages to TSVs and Si single crystals. In case that void was in TSV, stress was concentrated around void in TSV and the magnitude of the equivalent stress was lower than the yield stress of copper. The level of stresses applied to Si chip was slightly reduced due to void in TSV. However, its level should not be negligible in inducing damages to TSVs and Si single crystals.


2000 ◽  
Vol 68 (3) ◽  
pp. 441-452 ◽  
Author(s):  
H. Nozaki ◽  
M. Taya

In this paper, the elastic field in an infinite elastic body containing a polyhedral inclusion with uniform eigenstrains is investigated. Exact solutions are obtained for the stress field in and around a fully general polyhedron, i.e., an arbitrary bounded region of three-dimensional space with a piecewise planner boundary. Numerical results are presented for the stress field and the strain energy for several major polyhedra and the effective stiffness of a composite with regular polyhedral inhomogeneities. It is found that the stresses at the center of a polyhedral inclusion with uniaxial eigenstrain do not coincide with those for a spherical inclusion (Eshelby’s solution) except for dodecahedron and icosahedron which belong to icosidodeca family, i.e., highly symmetrical structure.


Sign in / Sign up

Export Citation Format

Share Document