scholarly journals Data Anomaly Detection of Bridge Structures Using Convolutional Neural Network Based on Structural Vibration Signals

Symmetry ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1186
Author(s):  
Yixiao Zhang ◽  
Ying Lei

Structural monitoring provides valuable information on the state of structural health, which is helpful for structural damage detection and structural state assessment. However, when the sensors are exposed to harsh environmental conditions, various anomalies caused by sensor failure or damage lead to abnormalities of the monitoring data. It is inefficient to remove abnormal data by manual elimination because of the massive number of data obtained by monitoring systems. In this paper, a data anomaly detection method based on structural vibration signals and a convolutional neural network (CNN) is proposed, which can automatically identify and eliminate abnormal data. First, the anomaly detection problem is modeled as a time series classification problem. Data preprocessing and data augmentation, including data expansion and down-sampling to construct new samples, are employed to process the original time series. For a small number of samples in the data set, randomly increase outliers, symmetrical flipping, and noise addition methods are used for data expansion, and samples with the same label are added without increasing the original samples. The down-sampling method of symmetrically extracting the maximum value and the minimum value at the same time can effectively reduce the dimensionality of the input sample, while retaining the characteristics of the data to the greatest extent. Using hyperparameter tuning of the classification weights, CNN is more effective in dealing with unbalanced training sets. Finally, the effectiveness of the proposed method is proved by the anomaly detection of acceleration data on a long-span bridge. For the anomaly detection problem modeled as a time series classification problem, the proposed method can effectively identify various abnormal patterns.

2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Defeng Lv ◽  
Huawei Wang ◽  
Changchang Che

Purpose The purpose of this study is to achieve an accurate intelligent fault diagnosis of rolling bearing. Design/methodology/approach To extract deep features of the original vibration signal and improve the generalization ability and robustness of the fault diagnosis model, this paper proposes a fault diagnosis method of rolling bearing based on multiscale convolutional neural network (MCNN) and decision fusion. The original vibration signals are normalized and matrixed to form grayscale image samples. In addition, multiscale samples can be achieved by convoluting these samples with different convolution kernels. Subsequently, MCNN is constructed for fault diagnosis. The results of MCNN are put into a data fusion model to obtain comprehensive fault diagnosis results. Findings The bearing data sets with multiple multivariate time series are used to testify the effectiveness of the proposed method. The proposed model can achieve 99.8% accuracy of fault diagnosis. Based on MCNN and decision fusion, the accuracy can be improved by 0.7%–3.4% compared with other models. Originality/value The proposed model can extract deep general features of vibration signals by MCNN and obtained robust fault diagnosis results based on the decision fusion model. For a long time series of vibration signals with noise, the proposed model can still achieve accurate fault diagnosis.


2021 ◽  
Vol 11 (23) ◽  
pp. 11520
Author(s):  
Yue Sun ◽  
Sandor Brockhauser ◽  
Péter Hegedűs

In scientific research, spectroscopy and diffraction experimental techniques are widely used and produce huge amounts of spectral data. Learning patterns from spectra is critical during these experiments. This provides immediate feedback on the actual status of the experiment (e.g., time-resolved status of the sample), which helps guide the experiment. The two major spectral changes what we aim to capture are either the change in intensity distribution (e.g., drop or appearance) of peaks at certain locations, or the shift of those on the spectrum. This study aims to develop deep learning (DL) classification frameworks for one-dimensional (1D) spectral time series. In this work, we deal with the spectra classification problem from two different perspectives, one is a general two-dimensional (2D) space segmentation problem, and the other is a common 1D time series classification problem. We focused on the two proposed classification models under these two settings, the namely the end-to-end binned Fully Connected Neural Network (FCNN) with the automatically capturing weighting factors model and the convolutional SCT attention model. Under the setting of 1D time series classification, several other end-to-end structures based on FCNN, Convolutional Neural Network (CNN), ResNets, Long Short-Term Memory (LSTM), and Transformer were explored. Finally, we evaluated and compared the performance of these classification models based on the High Energy Density (HED) spectra dataset from multiple perspectives, and further performed the feature importance analysis to explore their interpretability. The results show that all the applied models can achieve 100% classification confidence, but the models applied under the 1D time series classification setting are superior. Among them, Transformer-based methods consume the least training time (0.449 s). Our proposed convolutional Spatial-Channel-Temporal (SCT) attention model uses 1.269 s, but its self-attention mechanism performed across spatial, channel, and temporal dimensions can suppress indistinguishable features better than others, and selectively focus on obvious features with high separability.


2022 ◽  
Vol 258 (1) ◽  
pp. 12
Author(s):  
Vlad Landa ◽  
Yuval Reuveni

Abstract Space weather phenomena such as solar flares have a massive destructive power when they reach a certain magnitude. Here, we explore the deep-learning approach in order to build a solar flare-forecasting model, while examining its limitations and feature-extraction ability based on the available Geostationary Operational Environmental Satellite (GOES) X-ray time-series data. We present a multilayer 1D convolutional neural network to forecast the solar flare event probability occurrence of M- and X-class flares at 1, 3, 6, 12, 24, 48, 72, and 96 hr time frames. The forecasting models were trained and evaluated in two different scenarios: (1) random selection and (2) chronological selection, which were compared afterward in terms of common score metrics. Additionally, we also compared our results to state-of-the-art flare-forecasting models. The results indicates that (1) when X-ray time-series data are used alone, the suggested model achieves higher score results for X-class flares and similar scores for M-class as in previous studies. (2) The two different scenarios obtain opposite results for the X- and M-class flares. (3) The suggested model combined with solely X-ray time-series fails to distinguish between M- and X-class magnitude solar flare events. Furthermore, based on the suggested method, the achieved scores, obtained solely from X-ray time-series measurements, indicate that substantial information regarding the solar activity and physical processes are encapsulated in the data, and augmenting additional data sets, both spatial and temporal, may lead to better predictions, while gaining a comprehensive physical interpretation regarding solar activity. All source codes are available at https://github.com/vladlanda.


Author(s):  
Hao Wang ◽  
Yassine Qamsane ◽  
James Moyne ◽  
Kira Barton

Abstract Machine-part interaction classification is a key capability required by Cyber-Physical Systems (CPS), a pivotal enabler of Smart Manufacturing (SM). While previous relevant studies on the subject have primarily focused on time series classification, change point detection is equally important because it provides temporal information on changes in behavior of the machine. In this work, we address point detection and time series classification for machine-part interactions with a deep Convolutional Neural Network (CNN) based framework. The CNN in this framework utilizes a two-stage encoder-classifier structure for efficient feature representation and convenient deployment customization for CPS. Though data-driven, the design and optimization of the framework are Subject Matter Expertise (SME) guided. An SME defined Finite State Machine (FSM) is incorporated into the framework to prohibit intermittent misclassifications. In the case study, we implement the framework to perform machine-part interaction classification on a milling machine, and the performance is evaluated using a testing dataset and deployment simulations. The implementation achieved an average F1-Score of 0.946 across classes on the testing dataset and an average delay of 0.24 seconds on the deployment simulations.


Sign in / Sign up

Export Citation Format

Share Document