scholarly journals Mass and Rate of Hierarchical Black Hole Mergers in Young, Globular and Nuclear Star Clusters

Symmetry ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1678
Author(s):  
Michela Mapelli ◽  
Filippo Santoliquido ◽  
Yann Bouffanais ◽  
Manuel Arca Sedda ◽  
Maria Celeste Artale ◽  
...  

Hierarchical mergers are one of the distinctive signatures of binary black hole (BBH) formation through dynamical evolution. Here, we present a fast semi-analytic approach to simulate hierarchical mergers in nuclear star clusters (NSCs), globular clusters (GCs) and young star clusters (YSCs). Hierarchical mergers are more common in NSCs than they are in both GCs and YSCs because of the different escape velocity. The mass distribution of hierarchical BBHs strongly depends on the properties of first-generation BBHs, such as their progenitor’s metallicity. In our fiducial model, we form black holes (BHs) with masses up to ∼103 M⊙ in NSCs and up to ∼102 M⊙ in both GCs and YSCs. When escape velocities in excess of 100 km s−1 are considered, BHs with mass >103 M⊙ are allowed to form in NSCs. Hierarchical mergers lead to the formation of BHs in the pair instability mass gap and intermediate-mass BHs, but only in metal-poor environments. The local BBH merger rate in our models ranges from ∼10 to ∼60 Gpc−3 yr−1; hierarchical BBHs in NSCs account for ∼10−2–0.2 Gpc−3 yr−1, with a strong upper limit of ∼10 Gpc−3 yr−1. When comparing our models with the second gravitational-wave transient catalog, we find that multiple formation channels are favored to reproduce the observed BBH population.

Author(s):  
Yann Bouffanais ◽  
Michela Mapelli ◽  
Filippo Santoliquido ◽  
Nicola Giacobbo ◽  
Ugo N Di Carlo ◽  
...  

Abstract With the recent release of the second gravitational-wave transient catalogue (GWTC-2), which introduced dozens of new detections, we are at a turning point of gravitational wave astronomy, as we are now able to directly infer constraints on the astrophysical population of compact objects. Here, we tackle the burning issue of understanding the origin of binary black hole (BBH) mergers. To this effect, we make use of state-of-the-art population synthesis and N-body simulations, to represent two distinct formation channels: BBHs formed in the field (isolated channel) and in young star clusters (dynamical channel). We then use a Bayesian hierarchical approach to infer the distribution of the mixing fraction f, with f = 0 (f = 1) in the pure dynamical (isolated) channel. We explore the effects of additional hyper-parameters of the model, such as the spread in metallicity σZ and the parameter σsp, describing the distribution of spin magnitudes. We find that the dynamical model is slightly favoured with a median value of f = 0.26, when σsp = 0.1 and σZ = 0.4. Models with higher spin magnitudes tend to strongly favour dynamically formed BBHs (f ≤ 0.1 if σsp = 0.3). Furthermore, we show that hyper-parameters controlling the rates of the model, such as σZ, have a large impact on the inference of the mixing fraction, which rises from 0.18 to 0.43 when we increase σZ from 0.2 to 0.6, for a fixed value of σsp = 0.1. Finally, our current set of observations is better described by a combination of both formation channels, as a pure dynamical scenario is excluded at the $99{{\ \rm per\ cent}}$ credible interval, except when the spin magnitude is high.


1992 ◽  
Vol 45 (4) ◽  
pp. 407
Author(s):  
KC Freeman

The young globular star clusters in the LMC offer us insights into the formation and early dynamical evolution of globular clusters which are unobtainable from the old globular clusters in our Galaxy. Because these young clusters are so young and populous, they provide an opportunity to measure the upper end of the initial mass function by direct means and also through the dynamical effects of stellar mass loss on the structure of the clusters.


Author(s):  
Marco Dall’Amico ◽  
Michela Mapelli ◽  
Ugo N Di Carlo ◽  
Yann Bouffanais ◽  
Sara Rastello ◽  
...  

Abstract GW190521 is the most massive binary black hole (BBH) merger observed to date, and its primary component lies in the pair-instability (PI) mass gap. Here, we investigate the formation of GW190521-like systems via three-body encounters in young massive star clusters. We performed 2× 105 simulations of binary-single interactions between a BBH and a massive ≥60 M⊙ black hole (BH), including post-Newtonian terms up to the 2.5 order and a prescription for relativistic kicks. In our initial conditions, we take into account the possibility of forming BHs in the PI mass gap via stellar collisions. If we assume that first-generation BHs have low spins, $\sim {0.17}{{\ \rm per\ cent}}$ of all the simulated BBH mergers have component masses, effective and precessing spin, and remnant mass and spin inside the $90{{\ \rm per\ cent}}$ credible intervals of GW190521. Seven of these systems are first-generation exchanged binaries, while five are second-generation BBHs. We estimate a merger rate density $\mathcal {R}_{\rm GW190521}\sim {0.03}\,$Gpc−3 yr−1 for GW190521-like binaries formed via binary-single interactions in young star clusters. This rate is extremely sensitive to the spin distribution of first-generation BBHs. Stellar collisions, second-generation mergers and dynamical exchanges are the key ingredients to produce GW190521-like systems in young star clusters.


1991 ◽  
Vol 148 ◽  
pp. 177-181
Author(s):  
K. C. Freeman ◽  
R.A.W. Elson

We discuss the integrated colours, kinematics, formation, dynamical evolution and initial mass functions of the young globular star clusters in the Large Magellanic Cloud (LMC). Because these clusters are so young, they offer us insights, unobtainable from the old globular clusters in our Galaxy, into the formation and early dynamical evolution of globular clusters.


2020 ◽  
Vol 492 (2) ◽  
pp. 2936-2954 ◽  
Author(s):  
Fabio Antonini ◽  
Mark Gieles

ABSTRACT Black hole (BH) binary mergers formed through dynamical interactions in dense star clusters are believed to be one of the main sources of gravitational waves (GWs) for Advanced LIGO and Virgo. Here, we present a fast numerical method for simulating the evolution of star clusters with BHs, including a model for the dynamical formation and merger of BH binaries. Our method is based on Hénon’s principle of balanced evolution, according to which the flow of energy within a cluster must be balanced by the energy production inside its core. Because the heat production in the core is powered by the BHs, one can then link the evolution of the cluster to the evolution of its BH population. This allows us to construct evolutionary tracks of the cluster properties including its BH population and its effect on the cluster and, at the same time, determine the merger rate of BH binaries as well as their eccentricity distributions. The model is publicly available and includes the effects of a BH mass spectrum, mass-loss due to stellar evolution, the ejection of BHs due to natal and dynamical kicks, and relativistic corrections during binary–single encounters. We validate our method using direct N-body simulations, and find it to be in excellent agreement with results from recent Monte Carlo models of globular clusters. This establishes our new method as a robust tool for the study of BH dynamics in star clusters and the modelling of GW sources produced in these systems. Finally, we compute the rate and eccentricity distributions of merging BH binaries for a wide range of cluster initial conditions, spanning more than two orders of magnitude in mass and radius.


2016 ◽  
Vol 463 (3) ◽  
pp. 2443-2452 ◽  
Author(s):  
Thomas O. Kimpson ◽  
Mario Spera ◽  
Michela Mapelli ◽  
Brunetto M. Ziosi

2021 ◽  
Vol 507 (4) ◽  
pp. 5132-5143
Author(s):  
Ugo N Di Carlo ◽  
Michela Mapelli ◽  
Mario Pasquato ◽  
Sara Rastello ◽  
Alessandro Ballone ◽  
...  

ABSTRACT Intermediate-mass black holes (IMBHs) in the mass range $10^2\!-\!10^5\, \mathrm{M_{\odot }}$ bridge the gap between stellar black holes (BHs) and supermassive BHs. Here, we investigate the possibility that IMBHs form in young star clusters via runaway collisions and BH mergers. We analyse 104 simulations of dense young star clusters, featuring up-to-date stellar wind models and prescriptions for core collapse and (pulsational) pair instability. In our simulations, only nine IMBHs out of 218 form via binary BH mergers, with a mass ∼100–140 M⊙. This channel is strongly suppressed by the low escape velocity of our star clusters. In contrast, IMBHs with masses up to ∼438 M⊙ efficiently form via runaway stellar collisions, especially at low metallicity. Up to ∼0.2 per cent of all the simulated BHs are IMBHs, depending on progenitor’s metallicity. The runaway formation channel is strongly suppressed in metal-rich (Z = 0.02) star clusters, because of stellar winds. IMBHs are extremely efficient in pairing with other BHs: ∼70 per cent of them are members of a binary BH at the end of the simulations. However, we do not find any IMBH–BH merger. More massive star clusters are more efficient in forming IMBHs: ∼8 per cent (∼1 per cent) of the simulated clusters with initial mass 104–3 × 104 M⊙ (103–5 × 103 M⊙) host at least one IMBH.


2009 ◽  
Vol 5 (S266) ◽  
pp. 231-237 ◽  
Author(s):  
Julio Chanamé ◽  
Justice Bruursema ◽  
Rupali Chandar ◽  
Jay Anderson ◽  
Roeland van der Marel ◽  
...  

AbstractEstablishing or ruling out, either through solid mass measurements or upper limits, the presence of intermediate-mass black holes (IMBHs; with masses of 102 − 105 M⊙) at the centers of star clusters would profoundly impact our understanding of problems ranging from the formation and long-term dynamical evolution of stellar systems, to the nature of the seeds and the growth mechanisms of supermassive black holes. While there are sound theoretical arguments both for and against their presence in today's clusters, observational studies have so far not yielded truly conclusive IMBH detections nor upper limits. We argue that the most promising approach to solving this issue is provided by the combination of measurements of the proper motions of stars at the centers of Galactic globular clusters and dynamical models able to take full advantage of this type of data set. We present a program based on HST observations and recently developed tools for dynamical analysis designed to do just that.


2020 ◽  
Vol 498 (3) ◽  
pp. 4287-4294
Author(s):  
Jongsuk Hong ◽  
Abbas Askar ◽  
Mirek Giersz ◽  
Arkadiusz Hypki ◽  
Suk-Jin Yoon

ABSTRACT The dynamical formation of black hole binaries in globular clusters that merge due to gravitational waves occurs more frequently in higher stellar density. Meanwhile, the probability to form intermediate mass black holes (IMBHs) also increases with the density. To explore the impact of the formation and growth of IMBHs on the population of stellar mass black hole binaries from globular clusters, we analyse the existing large survey of Monte Carlo globular cluster simulation data (mocca-survey Database I). We show that the number of binary black hole mergers agrees with the prediction based on clusters’ initial properties when the IMBH mass is not massive enough or the IMBH seed forms at a later time. However, binary black hole formation and subsequent merger events are significantly reduced compared to the prediction when the present-day IMBH mass is more massive than ${\sim}10^4\, \rm M_{\odot }$ or the present-day IMBH mass exceeds about 1 per cent of cluster’s initial total mass. By examining the maximum black hole mass in the system at the moment of black hole binary escaping, we find that ∼90 per cent of the merging binary black holes escape before the formation and growth of the IMBH. Furthermore, large fraction of stellar mass black holes are merged into the IMBH or escape as single black holes from globular clusters in cases of massive IMBHs, which can lead to the significant underpopulation of binary black holes merging with gravitational waves by a factor of 2 depending on the clusters’ initial distributions.


2020 ◽  
Vol 498 (1) ◽  
pp. 495-506 ◽  
Author(s):  
Ugo N Di Carlo ◽  
Michela Mapelli ◽  
Nicola Giacobbo ◽  
Mario Spera ◽  
Yann Bouffanais ◽  
...  

ABSTRACT Young star clusters are the most common birthplace of massive stars and are dynamically active environments. Here, we study the formation of black holes (BHs) and binary black holes (BBHs) in young star clusters, by means of 6000 N-body simulations coupled with binary population synthesis. We probe three different stellar metallicities (Z = 0.02, 0.002, and 0.0002) and two initial-density regimes (density at the half-mass radius ρh ≥ 3.4 × 104 and ≥1.5 × 102 M⊙ pc−3 in dense and loose star clusters, respectively). Metal-poor clusters tend to form more massive BHs than metal-rich ones. We find ∼6, ∼2, and <1 per cent of BHs with mass mBH > 60 M⊙ at Z = 0.0002, 0.002, and 0.02, respectively. In metal-poor clusters, we form intermediate-mass BHs with mass up to ∼320 M⊙. BBH mergers born via dynamical exchanges (exchanged BBHs) can be more massive than BBH mergers formed from binary evolution: the former (latter) reach total mass up to ∼140 M⊙ (∼80 M⊙). The most massive BBH merger in our simulations has primary mass ∼88 M⊙, inside the pair-instability mass gap, and a mass ratio of ∼0.5. Only BBHs born in young star clusters from metal-poor progenitors can match the masses of GW 170729, the most massive event in first and second observing run (O1 and O2), and those of GW 190412, the first unequal-mass merger. We estimate a local BBH merger rate density ∼110 and ∼55 Gpc−3 yr−1, if we assume that all stars form in loose and dense star clusters, respectively.


Sign in / Sign up

Export Citation Format

Share Document