scholarly journals Testing an Algorithm with Asymmetric Markov-Switching GARCH Models in US Stock Trading

Symmetry ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 2346
Author(s):  
Oscar V. De la Torre-Torres ◽  
Dora Aguilasocho-Montoya ◽  
José Álvarez-García

In the present paper, we extend the current literature in algorithmic trading with Markov-switching models with generalized autoregressive conditional heteroskedastic (MS-GARCH) models. We performed this by using asymmetric log-likelihood functions (LLF) and variance models. From 2 January 2004 to 19 March 2021, we simulated 36 institutional investor’s portfolios. These used homogenous (either symmetric or asymmetric) Gaussian, Student’s t-distribution, or generalized error distribution (GED) and (symmetric or asymmetric) GARCH variance models. By including the impact of stock trading fees and taxes, we found that an institutional investor could outperform the S&P 500 stock index (SP500) if they used the suggested trading algorithm with symmetric homogeneous GED LLF and an asymmetric E-GARCH variance model. The trading algorithm had a simple rule, that is, to invest in the SP500 if the forecast probability of being in a calm or normal regime at t + 1 is higher than 50%. With this configuration in the MS-GARCH model, the simulated portfolios achieved a 324.43% accumulated return, of which the algorithm generated 168.48%. Our results contribute to the discussion on using MS-GARCH models in algorithmic trading with a combination of either symmetric or asymmetric pdfs and variance models.

Mathematics ◽  
2021 ◽  
Vol 9 (9) ◽  
pp. 1030
Author(s):  
Oscar V. De la Torre-Torres ◽  
Evaristo Galeana-Figueroa ◽  
José Álvarez-García

In the present paper, we test the benefit of using Markov-Switching models and volatility futures diversification in a Euro-based stock portfolio. With weekly data of the Eurostoxx 50 (ESTOXX50) stock index, we forecasted the smoothed regime-specific probabilities at T + 1 and used them as the weighting method of a diversified portfolio in ESTOXX50 and ESTOSS50 volatility index (VSTOXX) futures. With the estimated smoothed probabilities from 9 July 2009 to 29 September 2020, we simulated the performance of three theoretical investors who paid different trading costs and invested in ESTOXX50 during calm periods (low volatility regime) or VSTOXX futures and the three-month German treasury bills in distressed or highly distressed periods (high and extreme volatility regimes). Our results suggest that diversification benefits hold in the short-term, but if a given investor manages a two-asset portfolio with ESTOXX50 and our simulated portfolios, the stock portfolio’s performance is enhanced significantly, in the long term, with the presence of trading costs. These results are of use to practitioners for algorithmic and active trading applications in ESTOXX50 ETFs and VSTOXX futures.


Mathematics ◽  
2021 ◽  
Vol 9 (2) ◽  
pp. 185
Author(s):  
Oscar V. De la Torre-Torres ◽  
Francisco Venegas-Martínez ◽  
Mᵃ Isabel Martínez-Torre-Enciso

In the present paper, we test the use of Markov-Switching (MS) models with time-fixed or Generalized Autoregressive Conditional Heteroskedasticity (GARCH) variances. This, to enhance the performance of a U.S. dollar-based portfolio that invest in the S&P 500 (SP500) stock index, the 3-month U.S. Treasury-bill (T-BILL) or the 1-month volatility index (VIX) futures. For the investment algorithm, we propose the use of two and three-regime, Gaussian and t-Student, MS and MS-GARCH models. This is done to forecast the probability of high volatility episodes in the SP500 and to determine the investment level in each asset. To test the algorithm, we simulated 8 portfolios that invested in these three assets, in a weekly basis from 23 December 2005 to 14 August 2020. Our results suggest that the use of MS and MS-GARCH models and VIX futures leads the simulated portfolio to outperform a buy and hold strategy in the SP500. Also, we found that this result holds only in high and extreme volatility periods. As a recommendation for practitioners, we found that our investment algorithm must be used only by institutional investors, given the impact of stock trading fees.


Author(s):  
Fuzuli Aliyev ◽  
Richard Ajayi ◽  
Nijat Gasim

This paper models and estimates the volatility of nonfinancial, innovative and hi-tech focused stock index, the Nasdaq-100, using univariate symmetric and asymmetric GARCH models. We employ GARCH, EGARCH and GJR-GARCH using daily data over the period January 4, 2000 through March 19, 2019. We find that the volatility shocks on the index returns are quite persistent. Furthermore, our findings show that the index has leverage effect, and the impact of shocks is asymmetric, whereby the impacts of negative shocks on volatility are higher than those of positive shocks of the same magnitude.


2011 ◽  
Vol 61 (1) ◽  
pp. 33-59 ◽  
Author(s):  
M. Li ◽  
S. Yen

This investigation is one of the first to adopt quantile regression (QR) technique to examine covariance risk dynamics in international stock markets. Feasibility of the proposed model is demonstrated in G7 stock markets. Additionally, two conventional random-coefficient frameworks, including time-varying betas derived from GARCH models and state-varying betas implied by Markov-switching models, are employed and subjected to comparative analysis. The empirical findings of this work are consistent with the following notions. First, the beta smile (beta skew) curve for the Italian, U.S. and U.K. (Canadian, French and German) markets. That is, covariance risk among global stock markets in extremely bull and/or bear market states is significantly higher than in stable periods. Additionally, the Japanese market provides a special case, and its beta estimate at extremely bust state is significantly lower, not higher than that at the middle region. Second, the quantile-varying betas are identified as possessing two key advantages. Specifically, the comparison of the system with quantile-varying betas against that with time-varying betas implied by GARCH models provides meaningful implications for correlation-volatility relationship among international stock markets. Furthermore, the quantile-varying beta design in this study relaxes a simple dual beta setting implied by Markov-switching models of Ramchand — Susmel (1998) and can identify dynamics of asymmetry in betas.


2021 ◽  
Vol 3 (8) ◽  
Author(s):  
Majid Javari

AbstractThis paper represents the recurrence (reoccurrence) changes in the rainfall series using Markov Switching models (MSM). The switching employs a dynamic pattern that allows a linear model to be combined with nonlinearity models a discrete structure. The result is the Markov Switching models (MSM) reoccurrence predicting technique. Markov Switching models (MSM) were employed to analyze rainfall reoccurrence with spatiotemporal regime probabilities. In this study, Markov Switching models (MSM) were used based on the simple exogenous probability frame by identifying a first-order Markov process for the regime probabilities. The Markov transition matrix and regime probabilities were used to analyze the rainfall reoccurrence in 167 synoptic and climatology stations. The analysis results show a low distribution from 0.0 to 0.2 (0–20%) per day spatially from selecting stations, probability mean of daily rainfall recurrence is 0.84, and a different distribution based on the second regime was found to be more remarkable to the rainfall variability. The rainfall reoccurrence in daily rainfall was estimated with relatively low variability and strong reoccurrence daily with ranged from 0.851 to 0.995 (85.1–99.5%) per day based on the spatial distribution. The variability analysis of rainfall in the intermediate and long variability and irregular variability patterns would be helpful for the rainfall variability for environmental planning.


Sign in / Sign up

Export Citation Format

Share Document