scholarly journals A Proximal Algorithm with Convergence Guarantee for a Nonconvex Minimization Problem Based on Reproducing Kernel Hilbert Space

Symmetry ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 2393
Author(s):  
Hong-Xia Dou ◽  
Liang-Jian Deng

The underlying function in reproducing kernel Hilbert space (RKHS) may be degraded by outliers or deviations, resulting in a symmetry ill-posed problem. This paper proposes a nonconvex minimization model with ℓ0-quasi norm based on RKHS to depict this degraded problem. The underlying function in RKHS can be represented by the linear combination of reproducing kernels and their coefficients. Thus, we turn to estimate the related coefficients in the nonconvex minimization problem. An efficient algorithm is designed to solve the given nonconvex problem by the mathematical program with equilibrium constraints (MPEC) and proximal-based strategy. We theoretically prove that the sequences generated by the designed algorithm converge to the nonconvex problem’s local optimal solutions. Numerical experiment also demonstrates the effectiveness of the proposed method.

2017 ◽  
Vol 17 (15&16) ◽  
pp. 1292-1306 ◽  
Author(s):  
Rupak Chatterjee ◽  
Ting Yu

The support vector machine (SVM) is a popular machine learning classification method which produces a nonlinear decision boundary in a feature space by constructing linear boundaries in a transformed Hilbert space. It is well known that these algorithms when executed on a classical computer do not scale well with the size of the feature space both in terms of data points and dimensionality. One of the most significant limitations of classical algorithms using non-linear kernels is that the kernel function has to be evaluated for all pairs of input feature vectors which themselves may be of substantially high dimension. This can lead to computationally excessive times during training and during the prediction process for a new data point. Here, we propose using both canonical and generalized coherent states to calculate specific nonlinear kernel functions. The key link will be the reproducing kernel Hilbert space (RKHS) property for SVMs that naturally arise from canonical and generalized coherent states. Specifically, we discuss the evaluation of radial kernels through a positive operator valued measure (POVM) on a quantum optical system based on canonical coherent states. A similar procedure may also lead to calculations of kernels not usually used in classical algorithms such as those arising from generalized coherent states.


2016 ◽  
Vol 24 (2) ◽  
pp. 253-260
Author(s):  
Suna Saltan

Abstract By applying the so-called Berezin symbols method we prove a Gohberg- Krein type theorem on the weak limit of compact operators on the non- standard reproducing kernel Hilbert space which essentially improves the similar results of Karaev [5]: We also in terms of reproducing kernels and Berezin symbols investigate the structure of invariant subspaces of compact operators.


2017 ◽  
Vol 2017 ◽  
pp. 1-10 ◽  
Author(s):  
Sedigheh Farzaneh Javan ◽  
Saeid Abbasbandy ◽  
M. Ali Fariborzi Araghi

A new approach based on the Reproducing Kernel Hilbert Space Method is proposed to approximate the solution of the second-kind nonlinear integral equations. In this case, the Gram-Schmidt process is substituted by another process so that a satisfactory result is obtained. In this method, the solution is expressed in the form of a series. Furthermore, the convergence of the proposed technique is proved. In order to illustrate the effectiveness and efficiency of the method, four sample integral equations arising in electromagnetics are solved via the given algorithm.


Author(s):  
Michael T Jury ◽  
Robert T W Martin

Abstract We extend the Lebesgue decomposition of positive measures with respect to Lebesgue measure on the complex unit circle to the non-commutative (NC) multi-variable setting of (positive) NC measures. These are positive linear functionals on a certain self-adjoint subspace of the Cuntz–Toeplitz $C^{\ast }-$algebra, the $C^{\ast }-$algebra of the left creation operators on the full Fock space. This theory is fundamentally connected to the representation theory of the Cuntz and Cuntz–Toeplitz $C^{\ast }-$algebras; any *−representation of the Cuntz–Toeplitz $C^{\ast }-$algebra is obtained (up to unitary equivalence), by applying a Gelfand–Naimark–Segal construction to a positive NC measure. Our approach combines the theory of Lebesgue decomposition of sesquilinear forms in Hilbert space, Lebesgue decomposition of row isometries, free semigroup algebra theory, NC reproducing kernel Hilbert space theory, and NC Hardy space theory.


Author(s):  
Dominic Knoch ◽  
Christian R. Werner ◽  
Rhonda C. Meyer ◽  
David Riewe ◽  
Amine Abbadi ◽  
...  

Abstract Key message Complementing or replacing genetic markers with transcriptomic data and use of reproducing kernel Hilbert space regression based on Gaussian kernels increases hybrid prediction accuracies for complex agronomic traits in canola. In plant breeding, hybrids gained particular importance due to heterosis, the superior performance of offspring compared to their inbred parents. Since the development of new top performing hybrids requires labour-intensive and costly breeding programmes, including testing of large numbers of experimental hybrids, the prediction of hybrid performance is of utmost interest to plant breeders. In this study, we tested the effectiveness of hybrid prediction models in spring-type oilseed rape (Brassica napus L./canola) employing different omics profiles, individually and in combination. To this end, a population of 950 F1 hybrids was evaluated for seed yield and six other agronomically relevant traits in commercial field trials at several locations throughout Europe. A subset of these hybrids was also evaluated in a climatized glasshouse regarding early biomass production. For each of the 477 parental rapeseed lines, 13,201 single nucleotide polymorphisms (SNPs), 154 primary metabolites, and 19,479 transcripts were determined and used as predictive variables. Both, SNP markers and transcripts, effectively predict hybrid performance using (genomic) best linear unbiased prediction models (gBLUP). Compared to models using pure genetic markers, models incorporating transcriptome data resulted in significantly higher prediction accuracies for five out of seven agronomic traits, indicating that transcripts carry important information beyond genomic data. Notably, reproducing kernel Hilbert space regression based on Gaussian kernels significantly exceeded the predictive abilities of gBLUP models for six of the seven agronomic traits, demonstrating its potential for implementation in future canola breeding programmes.


Author(s):  
Fabio Sigrist

AbstractWe introduce a novel boosting algorithm called ‘KTBoost’ which combines kernel boosting and tree boosting. In each boosting iteration, the algorithm adds either a regression tree or reproducing kernel Hilbert space (RKHS) regression function to the ensemble of base learners. Intuitively, the idea is that discontinuous trees and continuous RKHS regression functions complement each other, and that this combination allows for better learning of functions that have parts with varying degrees of regularity such as discontinuities and smooth parts. We empirically show that KTBoost significantly outperforms both tree and kernel boosting in terms of predictive accuracy in a comparison on a wide array of data sets.


Sign in / Sign up

Export Citation Format

Share Document