scholarly journals Newton’s Third Law in the Framework of Special Relativity for Charged Bodies Part 2: Preliminary Analysis of a Nano Relativistic Motor

Symmetry ◽  
2022 ◽  
Vol 14 (1) ◽  
pp. 94
Author(s):  
Asher Yahalom

(1) Background: In a recent paper discussing Newton’s third law in the framework of special relativity for charged bodies, it was suggested that one can construct a practical relativistic motor provided high enough charge and current densities are available. As on the macroscopic scale charge density is limited by the phenomena of dielectric breakdown, it was suggested to take advantage of the high charge densities which are available on the microscopic scale. (2) Methods: We use standard physical theories such as Maxwell electrodynamics and quantum mechanics, supplemented by tools from vector analysis and numerics. (3) Results: We show that a hydrogen atom either in the ground state or excited state will not produce a relativistic engine effect, but by breaking the symmetry or putting the electron in a wave packet state may produce relativistic motor effect. (4) Conclusions: A highly localized wave packet will produce a strong relativistic motor effect. The preliminary analysis of the current paper suggests new promising directions of research both theoretical and experimental.

Author(s):  
Asher Yahalom

In a recent paper discussing Newton’s third law in the framework of special relativity for charged bodies, it was suggested that one can construct a practical relativistic motor provided high enough charge and current densities are available. As on the macroscopic scale charge density is limited by the phenomena of dielectric breakdown, it was suggested to take advantage of the high charge densities which are available on the microscopic scale. A preliminary analysis of this option denoted "nano relativistic scale" is studied in the current paper.


Author(s):  
Jifeng Chen ◽  
Peilin Song ◽  
Thomas M. Shaw ◽  
Franco Stellari ◽  
Lynne Gignac ◽  
...  

Abstract In this paper, we propose a new methodology and test system to enable the early detection and precise localization of Time-Dependent-Dielectric-Breakdown (TDDB) occurrence in Back-End-of-Line (BEOL) interconnection. The methodology is implemented as a novel Integrated Reliability Test System (IRTS). In particular, through our methodology and test system, we can easily synchronize electrical measurements and emission microscopy images to gather more accurate information and thereby gain insight into the nature of the defects and their relationship to chip manufacturing steps and materials, so that we can ultimately better engineer these steps for higher reliable systems. The details of our IRTS will be presented along with a case study and preliminary analysis results.


2008 ◽  
Vol 23 (02) ◽  
pp. 327-351 ◽  
Author(s):  
J. H. FIELD

Standard formulae of classical electromagnetism for the forces between electric charges in motion derived from retarded potentials are compared with those obtained from a recently developed relativistic classical electrodynamic theory with an instantaneous intercharge force. Problems discussed include small angle Rutherford scattering, Jackson's recent "torque paradox" and circular Keplerian orbits. Results consistent with special relativity are obtained only with an instantaneous interaction. The impossibility of stable circular motion with retarded fields in either classical electromagnetism or Newtonian gravitation is demonstrated.


The microscopic field equations of electromagnetism interacting with a many-particle Schrodinger field of charged particles are shown to be exactly equivalent to the atomic field equations where the sources are free electron and ion charge densities and convective and Rontgen current densities only. The fields are now the microscopic displacement vector d and the microscopic auxiliary field h and their relation to the electric and magnetic fields e and b are given exactly in terms of polarization and magnetization vectors without reference to any multipolar expansions. The values of the polarization fields are calculated for several transitions in atomic hydrogen to illustrate the connexion with the usual multipole expansions.


1971 ◽  
Vol 5 (2) ◽  
pp. 199-210 ◽  
Author(s):  
D. Nunn

The system studied is that of an electrostatic Gaussian wave packet in a cold uniform plasma being excited by a weak resonant beam. To first order in a parameter associated with the weakness of the beam the resonant particle distribution function and resonant particle charge densities are computed.


Sign in / Sign up

Export Citation Format

Share Document