scholarly journals Symmetry Control of Comfortable Vehicle Suspension Based on H∞

Symmetry ◽  
2022 ◽  
Vol 14 (1) ◽  
pp. 171
Author(s):  
Jiguang Hou ◽  
Xianteng Cao ◽  
Changshu Zhan

Suspension is an important part of intelligent and safe transportation; it is the balance point between the comfort and handling stability of a vehicle under intelligent traffic conditions. In this study, a control method of left-right symmetry of air suspension based on H∞ theory was proposed, which was verified under intelligent traffic conditions. First, the control stability caused by the active suspension control system running on uneven roads needs to be ensured. To address this issue, a 1/4 vehicle active suspension model was established, and the vertical acceleration of the vehicle body was applied as the main index of ride comfort. H∞ performance constraint output indicators of the controller contained the tire dynamic load, suspension dynamic stroke, and actuator control force limit. Based on the Lyapunov stability theory, an output feedback control law with H∞-guaranteed performance was proposed to constrain multiple targets. This way, the control problem was transformed into a solution to the Riccati equation. The simulation results showed that when dealing with general road disturbances, the proposed control strategy can reduce the vehicle body acceleration by about 20% and meet the requirements of an ultimate suspension dynamic deflection of 0.08 m and a dynamic tire load of 1500 N. Using this symmetrical control method can significantly improve the ride comfort and driving stability of a vehicle under intelligent traffic conditions.

1995 ◽  
Vol 7 (4) ◽  
pp. 307-311
Author(s):  
Hideo Tobata ◽  
◽  
Takeshi Kimura ◽  
Yohsuke Akatsu

It is known that the ride comfort of a vehicle equipped with active suspension can be further improved if a priori information about the road surface, i.e., preview control, is used. This paper discusses the application of preview control to the rear wheels of a vehicle with active suspension. Information about the front wheels' vertical motion is used to estimate the vertical travel of the rear wheels. Vibration transmitted from the road surface to the vehicle body through the rear suspension can be estimated from the vertical motion of the wheels. Thus, the control force that should be generated by the rear suspension actuators can be obtained. Simulation results reveal that preview control provides an accurate estimate of road force inputs, enabling the vertical acceleration of the vehicle body to be reduced for further improvement in ride comfort. The results of vehicle driving tests also confirm that the preview-control force serves to reduce the vertical acceleration of the vehicle body. Cooperation between preview control and a skyhook damper is also discussed and shown to be effective in reducing vehicle body vibration.


2014 ◽  
Vol 663 ◽  
pp. 152-157
Author(s):  
Aghil Shavalipour ◽  
Sallehuddin Mohamed Haris

This paper consider the control of active automotive suspensions applying Mixed (H2/H∞) state-space optimization techniques. It is well known that the ride comfort is improved by reducing vehicle body acceleration generated by road disturbance. In order to study this phenomenon, Two Degrees of Freedom (DOF) in state space vehicle model was built in. However, the H∞ control method attenuates the agitation effect on the output while H2 is employed to improve the input of the controller. Linear Matrix Inequality (LMI) technique is employed to calculate the dynamic controller parameters. The outcome of the simulation revealed that ride comfort for the vehicle upgraded adequately by applying mixed H2/H∞ Control method for active suspension system, and also the mixed H2/H∞ Control method was more effective than the H∞ Control method.


2011 ◽  
Vol 308-310 ◽  
pp. 1673-1678
Author(s):  
Yan Yan Zuo ◽  
Cai Bao Yan ◽  
Nan Yang

A vehicle active suspension model with 1 / 2 ,four-degrees of freedom is established and by combining genetic algorithm with optimal control theory,the author presents a new control method of active suspension that is to optimize the value of K controlled by LQG in default of road input based on genetic algorithm and makes a simulation in the environment of Matlab / Simulink. By simulation and analysis,the result indicates that,this method has an obvious effect on improving comprehensive performance of vehicles,such as ride comfort and operate stability and so on.


Author(s):  
Hao Chen ◽  
Mingde Gong ◽  
Dingxuan Zhao ◽  
Jianxu Zhu

This paper proposes an attitude control strategy based on road level for heavy rescue vehicles. The strategy aims to address the problem of poor ride comfort and stability of heavy rescue vehicles in complex road conditions. Firstly, with the pressure of the suspension hydraulic cylinder chamber without a piston rod as the parameter, Takagi–Sugeno fuzzy controller classification and adaptive network-based fuzzy inference system controller classification are used to recognise the road level. Secondly, particle swarm optimisation is adopted to obtain the optimal parameters of the active suspension system of vehicle body attitude control under different road levels. Lastly, the parameters of the active suspension system are selected in accordance with the road level recognised in the driving process to improve the adaptive adjustment capability of the active suspension system at different road levels. Test results show that the root mean square values of vertical acceleration, pitch angle and roll angle of the vehicle body are reduced by 59.9%, 76.2% and 68.4%, respectively. This reduction improves the ride comfort and stability of heavy rescue vehicles in complex road conditions.


2013 ◽  
Vol 340 ◽  
pp. 631-635
Author(s):  
Yong Fa Qin ◽  
Jie Hua ◽  
Long Wei Geng

Vehicles with active suspension systems become more ride comfort and maneuverable stability, many types of active suspensions have been applied to passenger vehicles, but one of the shortcomings of an active susupension system is that the additional control power consumption is needed. The core issues of designing an active suspension system are to minimiaze vibration magnitute and control energy comsuption of the active suspension system. A new mathematic model for an active suspension system is established based on vehicle dynamics and modern control theory. An optimal control law is constructed through solving the Riccati equation, and then the transfer function is deduced to describe the relationship between the vetical velosity of the road roughness and the output of suspension system. Three typical parameters of vehicle ride comfort are researched, such as vertical acceleration of vehicle body, dynamic deflection of suspension system and dynamic deformation of tires. A case of a quarter vehicle model is studied by simulation to show that the proposed method of modeling and designing optimal controller are suitable to develop active suspension systems.


2017 ◽  
Vol 20 (K5) ◽  
pp. 44-50
Author(s):  
Huyen Thi Thanh Dinh

This paper introduces a robust control method for car’s Macpherson active suspensions included uncertainties and exogenous disturbances. Based on saturated RISE control methodology, control force is guaranteed to be limited to a priori limit. Lyapunov stability analysis is exploited to prove control errors including vertical displacement, velocity and acceleration of the sprung mass asymptotically go to zero, so the ride comfort is improved. Simulations are performed to show the effectiveness of the proposed method in both time domain and frequency domain in comparison with the active suspension with PID controller, the semi-active suspension with a modified Skyhook control and the passive suspension.


This paper examines the performance of Model Predictive Control (MPC) scheme for an Active suspension. A vehicle suspension is designed to provide superior ride comfort and road handling characteristics. Unlike passive suspensions, the Active suspension can change the dynamic of suspension in real-time by injecting force into the system. MPC allows the active suspension to provide better and consistent passenger comfort and road handling capabilities for different road profile. Even though long back, the idea of active suspension conceived, the prohibitive cost and complexity restricted its usage. In recent years active suspension is receiving more and more attention with users preferring a high-end car. In an active suspension for the real-time adjustment of the control force, need a design of a controller. In literature, many controllers used such as Proportional Integral Derivative (PID), Linear Quadratic regulators (LQR), Fuzzy logic controller, Artificial Neural Networks (ANN). In this paper, revealed a model predictive control arrangement for Active suspension model. MPC is an optimal control scheme which uses a model of plant for predicting the future output. The control inputs are optimized such that these predicted outputs meet the desired level of performance. Tested the MPC control scheme is using a benchscale replica of Quarter active suspension model from QUANSER. To better appreciate the capabilities of the MPC Control Scheme, compared the performance of the active suspension with that of an LQR control scheme, and passive suspension.


Author(s):  
Amirhossein Kazemipour ◽  
Alireza B Novinzadeh

In this paper, a control system is designed for a vehicle active suspension system. In particular, a novel terminal sliding-mode-based fault-tolerant control strategy is presented for the control problem of a nonlinear quarter-car suspension model in the presence of model uncertainties, unknown external disturbances, and actuator failures. The adaptation algorithms are introduced to obviate the need for prior information of the bounds of faults in actuators and uncertainties in the model of the active suspension system. The finite-time convergence of the closed-loop system trajectories is proved by Lyapunov's stability theorem under the suggested control method. Finally, detailed simulations are presented to demonstrate the efficacy and implementation of the developed control strategy.


2020 ◽  
Vol 1 (1) ◽  
Author(s):  
Ivan Cvok ◽  
Mario Hrgetić ◽  
Matija Hoić ◽  
Joško Deur ◽  
Davor Hrovat ◽  
...  

Abstract Autonomous vehicles (AVs) give the driver opportunity to engage in productive or pleasure-related activities, which will increase AV’s utility and value. It is anticipated that many AVs will be equipped with active suspension extended with road disturbance preview capability to provide the necessary superior ride comfort resulting in almost steady work or play platform. This article deals with assessing the benefits of introducing various active suspensions and related linear quadratic regulator (LQR) controls in terms of improving the work/leisure ability. The study relies on high-performance shaker rig-based tests of a group of 44 drivers involved in reading/writing, drawing, and subjective ride comfort rating tasks. The test results indicate that there is a threshold of root-mean-square vertical acceleration, below which the task execution performance is similar to that corresponding to standstill conditions. For the given, relatively harsh road disturbance profile, only the fully active suspension with road preview control can suppress the vertical acceleration below the above critical superior comfort threshold. However, when adding an active seat suspension, the range of chassis suspension types for superior ride comfort is substantially extended and can include semi-active suspension and even passive suspension in some extreme cases that can, however, lead to excessive relative motion between the seat and the vehicle floor. The design requirements gained through simulation analysis, and extended with cost and packaging requirements related to passenger car applications, have guided design of two active seat suspension concepts applicable to the shaker rig and production vehicles.


2015 ◽  
Vol 759 ◽  
pp. 77-90 ◽  
Author(s):  
Tomasz Nabagło ◽  
Andrzej Jurkiewicz ◽  
Janusz Kowal

In the article, a new solution of a semi-active suspension system is presented. It is based on a sky-hook strategy model. This solution in 2S1 tracked platform is applied to improve body vehicle stability and driving comfort. The solution is applied in two versions of the 2S1 vehicle suspension model. First one is a basic model. This suspension is based on existing construction of the 2S1 platform suspension. It is based on torsion bars. Second one is a modified model, based on spiral torsion springs. In this model a new solution of idler mechanism is applied. It provides constant tension of the tracks. Semi-active suspensions simulations results are compared with results of models with passive versions of the suspension to highlight the improvement level. Simulations are conducted in the Yuma Proving Ground conditions. Results of all models simulations are compared and analyzed to improve stability and comfort level in conditions of the modern battlefield. Stability level is analyzed for weapon aiming tasks. Comfort level is analyzed for the vehicle crew efficiency.


Sign in / Sign up

Export Citation Format

Share Document