Adaptive fault-tolerant control for active suspension systems based on the terminal sliding mode approach

Author(s):  
Amirhossein Kazemipour ◽  
Alireza B Novinzadeh

In this paper, a control system is designed for a vehicle active suspension system. In particular, a novel terminal sliding-mode-based fault-tolerant control strategy is presented for the control problem of a nonlinear quarter-car suspension model in the presence of model uncertainties, unknown external disturbances, and actuator failures. The adaptation algorithms are introduced to obviate the need for prior information of the bounds of faults in actuators and uncertainties in the model of the active suspension system. The finite-time convergence of the closed-loop system trajectories is proved by Lyapunov's stability theorem under the suggested control method. Finally, detailed simulations are presented to demonstrate the efficacy and implementation of the developed control strategy.

2021 ◽  
Vol 13 (9) ◽  
pp. 168781402110454
Author(s):  
Ruinan Chen ◽  
Jian Ou

In this paper, a hybrid fault-tolerant control strategy is putted forward to improve the stability of the four-wheel independent drive (4WID) electric vehicle with motor failures. To improve the handling performance of the vehicle with in-wheel motor failures, the faults of in-wheel motors are analyzed and modeled. Then, a model reference adaptive fault observer was designed to observe the faults in real-time. Based on the observation results, there are designed a model predictive control (MPC) based high-performance active fault-tolerant control (AFTC) strategy and a sliding mode control based high-robust passive fault-tolerant control (PFTC) strategy. However, the fault observation results may not always be accurately. For this circumstance, a hybrid fault-tolerant control strategy was designed to make the control method find a balance between optimality and robustness. Finally, a series of simulations are conducted on a hardware-in-loop (HIL) real-time simulator, the simulation results show that the control strategy designed in this paper is effectiveness.


2021 ◽  
pp. 107754632110466
Author(s):  
Haohan Yang ◽  
Qingwei Liu ◽  
Yongchao Zhang ◽  
Fan Yu

This paper investigates an improved adaptive sliding mode fault-tolerant control strategy for a magnetorheological semi-active suspension system with parametric uncertainties and actuator faults. Using the experimental data collected by a quarter-vehicle test rig, an adaptive-network-based fuzzy inference system is employed to establish a learning-based magnetorheological damper model firstly. The Takagi-Sugeno fuzzy approach is introduced to deal with the uncertainties of sprung mass and pitch rotary inertia and then the corresponding Takagi-Sugeno faulty semi-active suspension system is constructed. An adaptive sliding mode fault-tolerant controller is proposed, in which the magnetorheological damper fault gain is observed by the designed estimation law, and the asymptotical stability of the system is further analyzed. Finally, numerical simulation tests are conducted to demonstrate the effectiveness of the designed control scheme.


2021 ◽  
pp. 002029402110286
Author(s):  
Pu Yang ◽  
Peng Liu ◽  
ChenWan Wen ◽  
Huilin Geng

This paper focuses on fast terminal sliding mode fault-tolerant control for a class of n-order nonlinear systems. Firstly, when the actuator fault occurs, the extended state observer (ESO) is used to estimate the lumped uncertainty and its derivative of the system, so that the fault boundary is not needed to know. The convergence of ESO is proved theoretically. Secondly, a new type of fast terminal sliding surface is designed to achieve global fast convergence, non-singular control law and chattering reduction, and the Lyapunov stability criterion is used to prove that the system states converge to the origin of the sliding mode surface in finite time, which ensures the stability of the closed-loop system. Finally, the effectiveness and superiority of the proposed algorithm are verified by two simulation experiments of different order systems.


2011 ◽  
Vol 216 ◽  
pp. 96-100
Author(s):  
Jing Jun Zhang ◽  
Wei Sha Han ◽  
Li Ya Cao ◽  
Rui Zhen Gao

A sliding mode controller for semi-active suspension system of a quarter car is designed with sliding model varying structure control method. This controller chooses Skyhook as a reference model, and to force the tracking error dynamics between the reference model and the plant in an asymptotically stable sliding mode. An equal near rate is used to improve the dynamic quality of sliding mode motion. Simulation result shows that the stability of performance of the sliding-mode controller can effectively improve the driving smoothness and safety.


Author(s):  
Tao Xu ◽  
Youqun Zhao ◽  
Fen Lin ◽  
Qiuwei Wang

For the purpose of anti-puncture and lightweight, a new type of mechanical elastic wheel (MEW) is constructed. However, the large radial stiffness of MEW has a negative effect on ride comfort. To make up for the disadvantage, this paper proposes a novel control strategy consisting of backstepping control and integral sliding-mode control, considering the uncertainties of active suspension and MEW. First, an active suspension system matching MEW is established, discussing the impact of uncertainties. The nonlinear radial characteristic of MEW is fitted based on the previous experiment results. Then, in order to derive ideal motions, an ideal suspension system combining sky-hook and ground-hook damping control is introduced. Next, ignoring the nonlinear characteristics and external random disturbance, a backstepping controller is designed to track ideal variables. Combined with the backstepping control law, an integral sliding-mode control strategy is given, further taking parameter uncertainty and external disturbance into account. To tackle chattering problem, an adaptive state variable matrix is applied. By using Lyapunov stability theory, the whole scheme proves to be robust and convergent. Finally, co-simulations with Carsim and MATLAB/Simulink are carried out. By analyzing the simulation results, it can be concluded that the vehicle adopting backstepping sliding-mode control performs best, with excellent real-time performance and robustness.


Sign in / Sign up

Export Citation Format

Share Document