scholarly journals A Review of Recent Developments in Composites Made of Recycled Carbon Fiber Textiles

Textiles ◽  
2021 ◽  
Vol 1 (3) ◽  
pp. 433-465
Author(s):  
Philip R. Barnett ◽  
Hicham K. Ghossein

Carbon fiber recycling has garnered significant attention in recent years due to the large volume of manufacturing waste and upcoming end-of-life products that will enter the waste stream as the current generation of aircraft is retired from service. Recycled carbon fibers have been shown to retain most of their virgin mechanical properties, but their length is generally reduced such that continuous fiber laminates cannot be remade. As such, these fibers are typically used in low-performance applications including injection molding, extrusion/compression molding, and 3D printing that further degrade the fiber length and resulting composite properties. However, recent advances in the processing of long discontinuous fiber textiles have led to medium- to high-performance composites using recycled carbon fibers. This review paper describes the recent advances in recycled carbon fiber textile processing that have made these improvements possible. The techniques used to manufacture high-value polymer composites reinforced with discontinuous recycled carbon fiber are described. The resulting mechanical and multifunctional properties are also discussed to illustrate the advantages of these new textile-based recycled fiber composites over the prior art.

Author(s):  
Ali N. Sarvestani ◽  
Nekoda van de Werken ◽  
Pouria Khanbolouki ◽  
Mehran Tehrani

Additively manufactured polymers can be reinforced with high-performance reinforcements such as carbon fibers. Printed thermoplastics with embedded continuous carbon fibers are up to two orders of magnitude stronger and stiffer than high-grade 3D printed polymers. In this work, the mechanical response of such 3D printed carbon fiber specimens is evaluated. While the precursor carbon fiber reinforced filaments achieve a stiffness of 50GPa and strength 700MPa, mechanical properties of their printed parts are highly affected by printed carbon fiber curvatures. In this work, the structure of 3D printed parts was examined, and some design rules for 3D printing with continuous carbon fibers are suggested. Moreover, failure mechanisms in these samples are discussed and correlated to the micro-structure of the composites and the carbon fiber configuration.


2016 ◽  
Vol 4 (46) ◽  
pp. 18164-18173 ◽  
Author(s):  
Xiaoyu Lu ◽  
Yang Bai ◽  
Ranran Wang ◽  
Jing Sun

A carbon fiber-based positive electrode enhanced by CNT modification with NiCo(OH)x and a negative electrode functionalized with activated carbon were prepared. The supercapacitor showed high energy and power densities.


2017 ◽  
Vol 5 (4) ◽  
pp. 571-582 ◽  
Author(s):  
Shilei Xie ◽  
Si Liu ◽  
Faliang Cheng ◽  
Xihong Lu

2021 ◽  
Vol 5 (3) ◽  
pp. 86
Author(s):  
Yi Wan ◽  
Jun Takahashi

The application of carbon fiber-reinforced thermoplastics (CFRTPs) for automotive mass production is attracting increasing attention from researchers and engineers in related fields. This article presents recent developments in CFRTPs focusing on the systematic development of lightweight CFRTP applications for automotive mass production. Additionally, a related national project of Japan conducted at the University of Tokyo is also introduced. The basic development demands, the specific requirements of CFRTPs for lightweight applications in automotive mass production, and the current development status and basic scientific outputs are discussed. The development of high-performance CFRTPs (chopped carbon fiber tape-reinforced thermoplastics (CTTs)) and functional CFRTPs (carbon fiber mat-reinforced thermoplastics (CMTs)) is also introduced. The fabrication process control of CTTs is evaluated, which demonstrates the extreme importance of the mechanical performance. The ultralight lattice, toughened structures, and orientation designable components of CMTs provide a flexible multi-material solution for the proposed applications. Moreover, highly efficient carbon fiber recycling technology is discussed, with recycled carbon fibers exhibiting outstanding compatibility with CFRTPs. A cost sensitivity analysis of carbon fiber and CFRTPs is conducted to guarantee the feasibility and affordability of their application. This article also discusses the trends and sustainability of carbon fiber and CFRTPs usage. The importance of the object-oriented optimal development of CFRTPs is emphasized to efficiently exploit their advantages.


2020 ◽  
Vol 62 (5) ◽  
pp. 1-42
Author(s):  
Anna N. Nurmukhametova ◽  

The main methods for producing a polyacrylonitrile precursor, methods for producing carbon fiber, its properties, and applications are presented. Patent research in the field of polyacrylonitrile precursor and carbon fiber. Technological problems in the subject area are identified, namely the development of technologies and equipment for producing high-strength carbon fiber, the development of technologies and equipment to reduce the cost of carbon fiber production, the development of technologies for improving the quality of carbon fiber-based composites, and the main ways to solve them are given. Ways to solve them are developing a technology for producing a polyacrylonitrile precursor for producing high-strength carbon fibers by the wet spinning method, developing a “dry-wet” method for producing polyacrylonitrile, developing high-performance equipment for producing technical polyacrylonitrile precursor in the form of bundles, developing technologies and equipment for efficient regeneration and utilization waste, heat and emissions from the production of carbon fibers, the development of new compositions of precursors and the transition to materials with a higher linear density, optimization of the structure of carbon fiber reinforced plastic to increase strength, the development of technologies and the creation of production of modern types of binders, including the addition of nanoparticles. The main methods for modifying the surface of a carbon fiber that are currently existing are considered.


RSC Advances ◽  
2015 ◽  
Vol 5 (102) ◽  
pp. 84238-84244 ◽  
Author(s):  
Liyang Lin ◽  
Tianmo Liu ◽  
Jianlin Liu ◽  
Kemeng Ji ◽  
Rong Sun ◽  
...  

We report on the design and synthesis of CFs@NiO-NSs by growing nickel oxide nanosheets (NiO-NSs) on carbon fibers (CFs), and find that the system shows a more enhanced electrochemical performance.


2018 ◽  
Vol 6 (17) ◽  
pp. 7835-7841 ◽  
Author(s):  
Xiaoming Qiu ◽  
Luning Wang ◽  
Li-Zhen Fan

A novel tungsten disulfide/active carbon fiber (WS2/ACF) nanocomposite was synthesized through electrospinning and a subsequent hydrothermal method, with the WS2 nanosheets homogeneously decorated on the surface of the one-dimensional active carbon fiber.


Sign in / Sign up

Export Citation Format

Share Document