scholarly journals A Toolbox for the Determination of Nitroaromatic Explosives in Marine Water, Sediment, and Biota Samples on Femtogram Levels by GC-MS/MS

Toxics ◽  
2021 ◽  
Vol 9 (3) ◽  
pp. 60
Author(s):  
Tobias Hartwig Bünning ◽  
Jennifer Susanne Strehse ◽  
Ann Christin Hollmann ◽  
Tom Bötticher ◽  
Edmund Maser

To determine the amount of the explosives 1,3-dinitrobenzene, 2,4-dinitrotoluene, 2,4,6-trinitrotoluene, and its metabolites in marine samples, a toolbox of methods was developed to enhance sample preparation and analysis of various types of marine samples, such as water, sediment, and different kinds of biota. To achieve this, established methods were adapted, improved, and combined. As a result, if explosive concentrations in sediment or mussel samples are greater than 10 ng per g, direct extraction allows for time-saving sample preparation; if concentrations are below 10 ng per g, techniques such as freeze-drying, ultrasonic, and solid-phase extraction can help to detect even picogram amounts. Two different GC-MS/MS methods were developed to enable the detection of these explosives in femtogram per microliter. With a splitless injector, limits of detection (LODs) between 77 and 333 fg/µL could be achieved in only 6.25 min. With the 5 µL programmable temperature vaporization—large volume method (PTV-LVI), LODs between 8 and 47 fg/µL could be achieved in less than 7 min. The detection limits achieved by these methods are among the lowest published to date. Their reliability has been tested and confirmed by measuring large and diverse sample sets.

2019 ◽  
Vol 15 (7) ◽  
pp. 788-800 ◽  
Author(s):  
Natasa P. Kalogiouri ◽  
Victoria F. Samanidou

Background:The sample preparation is the most crucial step in the analytical method development. Taking this into account, it is easily understood why the domain of sample preparation prior to detection is rapidly developing. Following the modern trends towards the automation, miniaturization, simplification and minimization of organic solvents and sample volumes, green microextraction techniques witness rapid growth in the field of food quality and safety. In a globalized market, it is essential to face the consumers need and develop analytical methods that guarantee the quality of food products and beverages. The strive for the accurate determination of organic hazards in a famous and appreciated alcoholic beverage like wine has necessitated the development of microextraction techniques.Objective:The objective of this review is to summarize all the recent microextraction methodologies, including solid phase extraction (SPE), solid phase microextraction (SPME), liquid-phase microextraction (LPME), dispersive liquid-liquid microextraction (DLLME), stir bar sorptive extraction (SBSE), matrix solid-phase dispersion (MSPD), single-drop microextraction (SDME) and dispersive solid phase extraction (DSPE) that were developed for the determination of hazardous organic compounds (pesticides, mycotoxins, colorants, biogenic amines, off-flavors) in wine. The analytical performance of the techniques is evaluated and their advantages and limitations are discussed.Conclusion:An extensive investigation of these techniques remains vital through the development of novel strategies and the implication of new materials that could upgrade the selectivity for the extraction of target analytes.


2003 ◽  
Vol 86 (4) ◽  
pp. 729-736 ◽  
Author(s):  
Aldo Laganà ◽  
Alessandro Bacaloni ◽  
Maryanna Castellano ◽  
Roberta Curini ◽  
Ilaria De Leva ◽  
...  

Abstract A new method based on matrix solid-phase dispersion (MSPD) on-line with a solid-phase extraction (SPE) cleanup process followed by liquid chromatography with tandem mass spectrometry (LC/MS/MS) is presented for the determination of 3 macrocyclic lactone mycotoxins in fish tissues: zearalenone, α-zearalenol, and β-zearalenol. The sample was prepared in a device that used a reversed-phase material (C18) or a normal-phase material (neutral alumina) as a matrix dispersing agent, and a graphitized carbon black cartridge was used for sequential cleanup by SPE. LC/MS/MS was used for selective determination. Isocratic elution with acetonitrile–methanol–water was used for LC separation; for MS/MS, 2 types of interfaces (a pneumatically assisted electrospray ionization interface or an atmospheric pressure chemical ionization interface) were evaluated and compared in terms of the intensity of the total ion current produced by each analyte. The use of highly selective MSPD on-line with SPE for sample preparation before analysis allowed the removal of interfering matrix compounds `present in tissue extracts that would otherwise cause severeionization suppression of zearalenone and its metabolites during the ionization process. Average recoveries at 100 ng/g were between 83 and 103% with C18 and ≥67% with neutral alumina; the relative standard deviations were <11% with C18 and <18% with alumina. The limits of detection ranged from 0.1 to 1.0 ng/g. Sample preparation is simple to perform, no special technical equipment is required, and solvent volumes are minimal.


Sign in / Sign up

Export Citation Format

Share Document