scholarly journals Properties of rotating neutron star in density-dependent relativistic mean-field models

Author(s):  
Rashid Riahi ◽  
Seyed Zafarollah Kalantari

Equilibrium sequences were developed for rotating neutron stars in the relativistic mean-field interaction framework using four density-dependent equations of state (EOSs) for the neutron star matter. These sequences were constructed for the observed rotation frequencies of 25, 317, 346, 716 and 1122[Formula: see text]Hz. The bounds of sequences, the secular axisymmetric instability, static and Keplerian sequences were calculated in each model to determine the stability region. The gravitational mass, quadrupole moment, polar, forward and backward redshifts, and Kerr parameter were calculated according to this stability region, and the allowable range of these quantities was then determined for each model. According to the results, DDF and DD-ME[Formula: see text] were unable to properly describe the low-frequency neutron stars, PSR J0348+432, PSR J1614-2230 and PSR J0740+6620 rotate at a frequency of 25, 317 and 346[Formula: see text]Hz, respectively. On the other hand, all the selected EOSs properly described the rotation of PSR J1748-244ad and PSR J1739-285 at a frequency of 716 and 1122[Formula: see text]Hz, respectively. The mass of these stars was, therefore, in the range of [Formula: see text] and [Formula: see text], respectively. The polar, forward and backward redshifts, and the quadrupole moment were calculated in all the selected rotating frequencies and the Keplerian sequence. The results were consistent with observations. Confirming the mass of [Formula: see text] for EXO 0748-676, our result, [Formula: see text], will be close to the observed value, and the EOSs used in this study properly describe this star. Interestingly, the extremum of Kerr parameter, polar, forward and backward redshifts in all models reached constant values of, [Formula: see text], [Formula: see text], [Formula: see text] and [Formula: see text], respectively. These behaviors of redshifts and Kerr parameter are approximately independent of EOS. The observed behaviors must evaluate by other EOSs to find universal relations for these quantities. Also, a limit value was found for each of these parameters. In this case where these parameters are greater than the limit value, the star can rotate at a frequency equal to or greater than [Formula: see text][Formula: see text]Hz.

Universe ◽  
2019 ◽  
Vol 5 (10) ◽  
pp. 204 ◽  
Author(s):  
Domenico Logoteta ◽  
Ignazio Bombaci

We discuss the constraints on the equation of state (EOS) of neutron star matter obtained by the data analysis of the neutron star-neutron star merger in the event GW170807. To this scope, we consider two recent microscopic EOS models computed starting from two-body and three-body nuclear interactions derived using chiral perturbation theory. For comparison, we also use three representative phenomenological EOS models derived within the relativistic mean field approach. For each model, we determine the β -stable EOS and then the corresponding neutron star structure by solving the equations of hydrostatic equilibrium in general relativity. In addition, we calculate the tidal deformability parameters for the two neutron stars and discuss the results of our calculations in connection with the constraints obtained from the gravitational wave signal in GW170817. We find that the tidal deformabilities and radii for the binary’s component neutron stars in GW170817, calculated using a recent microscopic EOS model proposed by the present authors, are in very good agreement with those derived by gravitational waves data.


2004 ◽  
Vol 13 (07) ◽  
pp. 1249-1253
Author(s):  
DÉBORA P. MENEZES ◽  
C. PROVIDÊNCIA

We investigate the properties of mixed stars formed by hadronic and quark matter in β-equilibrium described by appropriate equations of state (EOS) in the framework of relativistic mean-field theory. The calculations were performed for T=0 and for finite temperatures and also for fixed entropies with and without neutrino trapping in order to describe neutron and proto-neutron stars. The star properties are discussed. Maximum allowed masses for proto-neutron stars are much larger when neutrino trapping is imposed.


2008 ◽  
Vol 17 (09) ◽  
pp. 1720-1728
Author(s):  
L. DANG ◽  
P. YUE ◽  
L. LI ◽  
P. Z. NING

The hyperon density dependence (YDD) of hyperon-nucleon interactions are studied in the relativistic mean field (RMF) model and their influences on the properties of neutron stars are studied. The extended RMF considered the interior quarks coordinates of hyperon and bring a hyperon density dependent factor, f(ρY), to the meson-hyperon coupling vertexes. The hyperon density dependence of YN interaction affect the properties of neutron stars only after the corresponding hyperon appears. Then, the influences of the density dependence factors are almost ignored at low densities, which are clear at high densities. The compositions and properties of neutron stars are studied with and without the YDD of YN interactions for the different Σ--nucleus effective potentials, (30, 0, -30)MeV. The calculated results indicated that the YDD of YN interaction soften the equation of state of neutron stars at high densities.


2004 ◽  
Vol 13 (07) ◽  
pp. 1255-1259 ◽  
Author(s):  
EDUARDO LÜTZ ◽  
MOISÉS RAZEIRA ◽  
CÉSAR A. Z. VASCONCELLOS ◽  
MANFRED DILLIG

Based on non-crossed, crossed and correlated ππ exchanges with irreducible N, Δ intermediate states, we predict an isovector component for the σ meson. We study dense hadronic matter in a generalized relativistic mean field approach with nonlinear self-couplings of the I=0,1 components of the scalar field and compare its predictions for neutron star properties with results from different models found in the literature.


2021 ◽  
Vol 104 (6) ◽  
Author(s):  
W. Z. Shangguan ◽  
Z. Q. Huang ◽  
S. N. Wei ◽  
W. Z. Jiang

2008 ◽  
Vol 17 (09) ◽  
pp. 1815-1824 ◽  
Author(s):  
B. LIU ◽  
M. DI TORO ◽  
V. GRECO

The impact of a δ meson field (the scalar-isovector channel) on asymmetric nuclear matter is studied within relativistic mean-field (RMF) models with both constant and density dependent (DD) nucleon-meson couplings. The Equation of State (EOS) for asymmetric nuclear matter and the neutron star properties by the different models are compared. We find that the δ-field in the constant coupling scheme leads to a larger repulsion in dense neutron-rich matter and to a definite splitting of proton and neutron effective masses, finally influencing the stability of the neutron stars. A broader analysis of possible δ-field effects is achieved considering also density dependent nucleon-meson coupling. A remarkable effect on the relation between mass and radius for the neutron stars is seen, showing a significant reduction of the radius along with a moderate mass reduction due to the increase of the effective δ coupling in high density regions.


2019 ◽  
Vol 28 (02) ◽  
pp. 1950040 ◽  
Author(s):  
Debashree Sen ◽  
T. K. Jha

We explore the possibility of formation of [Formula: see text] baryons (1232[Formula: see text]MeV) in neutron star matter in an effective chiral model within the relativistic mean-field framework. With variation in delta-meson couplings, consistent with the constraints imposed on them, the resulting equation-of-state (EoS) is obtained and the neutron star properties are calculated for static and spherical configuration. Within the framework of our model, the critical densities of formation of [Formula: see text] and the properties of neutron stars (NS) are found to be very sensitive to the iso-vector coupling compared to the scalar or vector couplings. We revisit the [Formula: see text] puzzle and look for the possibility of phase transition from nonstrange hadronic matter (including nucleons and [Formula: see text]) to deconfined quark matter, based on QCD theories. The resultant hybrid star configurations satisfy the observational constraints on mass from the most massive pulsars PSR J1614-2230 and PSR J0348+0432 in static condition obtained with the general hydrostatic equilibrium based on GTR. Our radius estimates are well within the limits imposed from observational analysis of QLMBXs. The obtained values of [Formula: see text] are in agreement with the recent bounds specified from the observation of gravitational wave (GW170817) from binary neutron star merger. The constraint on baryonic mass from the study of binary system PSR J0737-3039 is also satisfied with our hybrid EoS.


2020 ◽  
Vol 2020 (10) ◽  
Author(s):  
C Watanabe ◽  
K Yanase ◽  
N Yoshinaga

Abstract Masses and radii of neutron stars are obtained in the presence of strong magnetic fields together with rotation. Mass-radius relations are calculated using 11 equations of state (EoSs: GM1, TM1-a, TM1-b, TM2$\omega\rho$-a, TM2$\omega\rho$-b, NL3-a, NL3-b, NL3$\omega\rho$-a, NL3$\omega\rho$-b, DDME2-a and DDME2-b) in relativistic mean field (RMF) theory. Obtained masses are over and around twice the solar mass ($M_\odot$) for all EoSs in the presence of strong magnetic fields of $3 \times 10^{18}$ G at the center. For NL3$\omega\rho$-a and NL3$\omega\rho$-b EoSs, masses are more than $M=2.17\,M_\odot$(observed maximum mass: $2.14\,M_\odot$) even without magnetic fields. Rotational effects are found to be insignificant in any case, at least up to the Kepler frequency. Suitable EoSs are also selected concerning the constraint on the radius of a neutron star.


2013 ◽  
Vol 22 (05) ◽  
pp. 1350026 ◽  
Author(s):  
CHEN WU ◽  
WEI-LIANG QIAN ◽  
YU-GANG MA ◽  
JI-FENG YANG

Relativistic mean-field theory with parameter sets FSUGold and IU-FSU is extended to study the properties of neutron star matter in β equilibrium by including Kaon condensation. The mixed phase of normal baryons and Kaon condensation cannot exist in neutron star matter for the FSUGold model and the IU-FSU model. In addition, it is found that when the optical potential of the K- in normal nuclear matter UK ≳ -100 MeV , the Kaon condensation phase is absent in the inner cores of the neutron stars.


Sign in / Sign up

Export Citation Format

Share Document