scholarly journals Genetic Insights into the Middle East Respiratory Syndrome Coronavirus Infection among Saudi People

Vaccines ◽  
2021 ◽  
Vol 9 (10) ◽  
pp. 1193
Author(s):  
Hatem A. Abuelizz ◽  
Maha M. AlRasheed ◽  
Ali Alhoshani ◽  
Tariq Alhawassi

Background: The Middle East respiratory syndrome coronavirus (MERS-CoV) was isolated for the first time in Saudi Arabia from a patient suffering from atypical pneumonia. The Saudi Genome database was built by King Abdulaziz Medical City via the next-generation sequencing of 7000 candidates. Method: A large list of point mutations were reported in the region of the dipeptidyl peptidase 4 (DPP4) gene. The DPP4 amino acid residues correlated to MERS-CoV entry and the site of activity of DPP4 inhibitors was investigated. We retrieved the SNPs (Single-Nucleotide Polymorphism) with a variation frequency of >0.05. Results: SNP 2:162,890,175 and SNP 2:162,891,848 in the intronic region were located within 50 bp of amino acid residues responsible for MERS-CoV entry, amino acids 259–296 and 205–258, respectively. The variation frequency of SNP 2:162,890,175 was 2321 out of 2379 screened individuals. Moreover, mutation of SNP 2:162,891,848, which is located near amino acid residues E205 and E206 (crucial for the activity of DPP4 inhibitors), occurred in 76 out of 2379 screened individuals. Conclusions: Our study shows high variation frequency in the DPP4 region reported in the Saudi Genome database. The identified SNPs are of high significance for MERS-CoV infection in better understanding disease pathogenesis.

2016 ◽  
Vol 90 (11) ◽  
pp. 5499-5502 ◽  
Author(s):  
Neeltje van Doremalen ◽  
Kerri L. Miazgowicz ◽  
Vincent J. Munster

ABSTRACTThe novel emerging coronavirus Middle East respiratory syndrome coronavirus (MERS-CoV) binds to its receptor, dipeptidyl peptidase 4 (DPP4), via 14 interacting amino acids. We previously showed that if the five interacting amino acids which differ between hamster and human DPP4 are changed to the residues found in human DPP4, hamster DPP4 does act as a receptor. Here, we show that the functionality of hamster DPP4 as a receptor is severely decreased if less than 4 out of 5 amino acids are changed.IMPORTANCEThe novel emerging coronavirus MERS-CoV has infected >1,600 people worldwide, and the case fatality rate is ∼36%. In this study, we show that by changing 4 amino acids in hamster DPP4, this protein functions as a receptor for MERS-CoV. This work is vital in the development of new small-animal models, which will broaden our understanding of MERS-CoV and be instrumental in the development of countermeasures.


Author(s):  
Sumathi Sivapalasingam ◽  
George A Saviolakis ◽  
Kirsten Kulcsar ◽  
Aya Nakamura ◽  
Thomas Conrad ◽  
...  

Abstract Background REGN3048 and REGN3051 are human monoclonal antibodies (mAb) targeting the spike glycoprotein on the Middle East respiratory syndrome coronavirus (MERS-CoV), which binds to the receptor dipeptidyl peptidase-4 (DPP4) and is necessary for infection of susceptible cells. Methods Preclinical study: REGN3048, REGN3051 and isotype immunoglobulin G (IgG) were administered to humanized DPP4 (huDPP4) mice 1 day prior to and 1 day after infection with MERS-CoV (Jordan strain). Virus titers and lung pathology were assessed. Phase 1 study: healthy adults received the combined mAb (n = 36) or placebo (n = 12) and followed for 121 days. Six dose levels were studied. Strict safety criteria were met prior to dose escalation. Results Preclinical study: REGN3048 plus REGN3051, prophylactically or therapeutically, was substantially more effective for reducing viral titer, lung inflammation, and pathology in huDPP4 mice compared with control antibodies and to each antibody monotherapy. Phase 1 study: REGN3048 plus REGN3051 was well tolerated with no dose-limiting adverse events, deaths, serious adverse events, or infusion reactions. Each mAb displayed pharmacokinetics expected of human IgG1 antibodies; it was not immunogenic. Conclusions REGN3048 and REGN3051 in combination were well tolerated. The clinical and preclinical data support further development for the treatment or prophylaxis of MERS-CoV infection.


2017 ◽  
Vol 91 (19) ◽  
Author(s):  
Kayla M. Peck ◽  
Trevor Scobey ◽  
Jesica Swanstrom ◽  
Kara L. Jensen ◽  
Christina L. Burch ◽  
...  

ABSTRACT Middle East respiratory syndrome coronavirus (MERS-CoV) utilizes dipeptidyl peptidase 4 (DPP4) as an entry receptor. While bat, camel, and human DPP4 support MERS-CoV infection, several DPP4 orthologs, including mouse, ferret, hamster, and guinea pig DPP4, do not. Previous work revealed that glycosylation of mouse DPP4 plays a role in blocking MERS-CoV infection. Here, we tested whether glycosylation also acts as a determinant of permissivity for ferret, hamster, and guinea pig DPP4. We found that, while glycosylation plays an important role in these orthologs, additional sequence and structural determinants impact their ability to act as functional receptors for MERS-CoV. These results provide insight into DPP4 species-specific differences impacting MERS-CoV host range and better inform our understanding of virus-receptor interactions associated with disease emergence and host susceptibility. IMPORTANCE MERS-CoV is a recently emerged zoonotic virus that is still circulating in the human population with an ∼35% mortality rate. With no available vaccines or therapeutics, the study of MERS-CoV pathogenesis is crucial for its control and prevention. However, in vivo studies are limited because MERS-CoV cannot infect wild-type mice due to incompatibilities between the virus spike and the mouse host cell receptor, mouse DPP4 (mDPP4). Specifically, mDPP4 has a nonconserved glycosylation site that acts as a barrier to MERS-CoV infection. Thus, one mouse model strategy has been to modify the mouse genome to remove this glycosylation site. Here, we investigated whether glycosylation acts as a barrier to infection for other nonpermissive small-animal species, namely, ferret, guinea pig, and hamster. Understanding the virus-receptor interactions for these DPP4 orthologs will help in the development of additional animal models while also revealing species-specific differences impacting MERS-CoV host range.


Vaccines ◽  
2020 ◽  
Vol 8 (4) ◽  
pp. 635
Author(s):  
Ju Kim ◽  
Ye Lin Yang ◽  
Yongsu Jeong ◽  
Yong-Suk Jang

Middle East respiratory syndrome coronavirus (MERS-CoV) causes severe acute respiratory symptoms. Due to the lack of medical countermeasures, effective and safe vaccines against MERS-CoV infection are urgently required. Although different types of candidate vaccines have been developed, their immunogenicity is limited, and the dose and administration route need optimization to achieve optimal protection. We here investigated the potential use of human β-defensin 2 (HBD 2) as an adjuvant to enhance the protection provided by MERS-CoV vaccination. We found that immunization of human dipeptidyl peptidase 4 (hDPP4)-transgenic (hDPP4-Tg) mice with spike protein receptor-binding domain (S RBD) conjugated with HBD 2 (S RBD-HBD 2) induced potent antigen (Ag)-specific adaptive immune responses and protected against MERS-CoV infection. In addition, immunization with S RBD-HBD 2 alleviated progressive pulmonary fibrosis in the lungs of MERS-CoV-infected hDPP4-Tg mice and suppressed endoplasmic reticulum stress signaling activation upon viral infection. Compared to intramuscular administration, intranasal administration of S RBD-HBD 2 induced more potent mucosal IgA responses and was more effective for protecting against intranasal MERS-CoV infection. In conclusion, our findings suggest that HBD 2 potentiates Ag-specific immune responses against viral Ag and can be used as an adjuvant enhancing the immunogenicity of subunit vaccine candidates against MERS-CoV.


1985 ◽  
Vol 5 (8) ◽  
pp. 1809-1813 ◽  
Author(s):  
R G Chipperfield ◽  
S S Jones ◽  
K M Lo ◽  
R A Weinberg

The transforming activity of naturally arising ras oncogenes results from point mutations that affect residue 12 or 61 of the encoded 21-kilodalton protein (p21). By use of site-directed mutagenesis, we showed that deletions and insertions of amino acid residues in the region of residue 12 are also effective in conferring oncogenic activity on p21. Common to these various alterations is the disruption that they create in this domain of the protein, which we propose results in the inactivation of a normal function of the protein.


2002 ◽  
Vol 46 (6) ◽  
pp. 1680-1687 ◽  
Author(s):  
Antonio Javier Martín-Galiano ◽  
Begoña Gorgojo ◽  
Calvin M. Kunin ◽  
Adela G. de la Campa

ABSTRACT The activities of mefloquine (MFL) and related compounds against previously characterized Streptococcus pneumoniae strains carrying defined amino acid substitutions in the c subunit of the F0F1 H+-ATPase were studied. In addition, a series of MFL-resistant (Mflr) strains were isolated and characterized. A good correlation was observed between inhibition of growth and inhibition of the membrane-associated F0F1 H+-ATPase activity. MFL was about 10-fold more active than optochin and about 200-fold more active than quinine in inhibiting both the growth and the ATPase activities of laboratory pneumococcal strain R6. Mutant strains were inhibited by the different compounds to different degrees, depending on their specific mutations in the c subunit. The resistant strains studied had point mutations that changed amino acid residues in either the c subunit or the a subunit of the F0 complex. Changes in the c subunit were located in one of the two transmembrane α helices: residues M13, G14, G20, M23, and N24 of helix 1 and residues M44, G47, V48, A49, and V57 of helix 2. Changes in the a subunit were also found in either of the transmembrane α helices, helix 5 or 6: residue L186 of helix 5 and residues W206, F209, and S214 of helix 6. These results suggest that the transmembrane helices of the c and a subunits interact and that the mutated residues are important for the structure of the F0 complex and proton translocation.


Sign in / Sign up

Export Citation Format

Share Document