scholarly journals Interactions between Lake-Level Fluctuations and Waterlogging Disasters around a Large-Scale Shallow Lake: An Empirical Analysis from China

Water ◽  
2019 ◽  
Vol 11 (2) ◽  
pp. 318 ◽  
Author(s):  
Zongzhi Wang ◽  
Kun Wang ◽  
Kelin Liu ◽  
Liang Cheng ◽  
Lihui Wang ◽  
...  

Waterlogging disasters in the lakeside areas of shallow lakes that located in plain regions are sensitive to lake-level fluctuations. However, there are very few studies on the influences of lake-level fluctuations on waterlogged lakeside areas from a large lake basin perspective. This paper proposes an integrated hydrodynamic model employing the MIKE software to contribute to the existing literature by filling the gap constituted by the lack of an estimation of the impacts of lake-level fluctuations on waterlogging disasters by relevant models. First, a coupled one-dimensional and two-dimensional hydrodynamic model is established to simulate the waterlogging routing in the lakeside area around Nansi Lake (NL) in addition to the flood routing in NL and its tributaries. Second, the model is calibrated and verified by two measured flood events in July 2007 and July 2008; the results indicate that the model can correctly simulate the drainage process of pumping stations in the lakeside area, as well as the interactions between the waterlogging drainage and lake-level fluctuations. Third, the process of waterlogging in the lakeside area of NL is simulated under different rainfall events and initial lake-level conditions. Fourth, based on the results of the model, this paper illustrates the influences of lake-level fluctuations on the waterlogged area around the lake, as well as the different responses of waterlogging in different areas to lake-level fluctuations in NL and the main cause for these differences. Finally, based on the results of the model, this paper presents some implications for waterlogging simulations and drainage system design.

2020 ◽  
Vol 14 (1) ◽  
pp. 287-308 ◽  
Author(s):  
Fabian Lindner ◽  
Fabian Walter ◽  
Gabi Laske ◽  
Florent Gimbert

Abstract. Hydraulic processes impact viscous and brittle ice deformation. Water-driven fracturing as well as turbulent water flow within and beneath glaciers radiate seismic waves which provide insights into otherwise hard-to-access englacial and subglacial environments. In this study, we analyze glaciohydraulic tremors recorded by four seismic arrays installed in different parts of Glacier de la Plaine Morte, Switzerland. Data were recorded during the 2016 melt season including the sudden subglacial drainage of an ice-marginal lake. Together with our seismic data, discharge, lake level, and ice flow measurements provide constraints on glacier hydraulics. We find that the tremors are generated by subglacial water flow, in moulins, and by icequake bursts. The dominating process can vary on sub-kilometer and sub-daily scales. Consistent with field observations, continuous source tracking via matched-field processing suggests a gradual up-glacier progression of an efficient drainage system as the melt season progresses. The ice-marginal lake likely connects to this drainage system via hydrofracturing, which is indicated by sustained icequake signals emitted from the proximity of the lake basin and starting roughly 24 h prior to the lake drainage. To estimate the hydraulics associated with the drainage, we use tremor–discharge scaling relationships. Our analysis suggests a pressurization of the subglacial environment at the drainage onset, followed by an increase in the hydraulic radii of the conduits and a subsequent decrease in the subglacial water pressure as the capacity of the drainage system increases. The pressurization is in phase with the drop in the lake level, and its retrieved maximum coincides with ice uplift measured via GPS. Our results highlight the use of cryo-seismology for monitoring glacier hydraulics.


Water ◽  
2018 ◽  
Vol 10 (12) ◽  
pp. 1743
Author(s):  
Junwei Zhou ◽  
Weimin Bao ◽  
Yu Li ◽  
Li Cheng ◽  
Muxi Bao

Although steady uniform friction formulas have been introduced to the framework of a one-dimensional (1D) hydrodynamic model for centuries, the error of friction calculation inevitably undermines the performance of flood routing. Based on successful results of unsteady channel friction research studies, a newly proposed unsteady friction model is introduced to establish a modified 1D hydrodynamic model (namely, the modified SVN model). With the help of a carefully designed parameter calibration method, the performance of the modified SVN model was compared with that of the original SVN model in a simulation test for a hydraulic experiment. This study’s results revealed that compared with the original SVN model, the modified SVN model could achieve a better simulation in both the flow depth and the sectional averaged velocity simulations. Furthermore, it could reduce the peak value error and the time-at-peak error as well, indicating that the use of an unsteady friction model can efficiently improve the performance of a 1D hydrodynamic model.


2012 ◽  
Vol 8 (5) ◽  
pp. 4701-4744 ◽  
Author(s):  
B. Vannière ◽  
M. Magny ◽  
S. Joannin ◽  
A. Simonneau ◽  
S. B. Wirth ◽  
...  

Abstract. Two lacustrine sediment cores from Lake Ledro in Northern Italy were studied to produce chronologies of flood events for the past 10 000 yr. For this purpose, we have developed an automatic method that objectively identifies the sedimentary imprint of river floods in the downstream lake basin. The automatic counting of flood deposits was based on colour data extracted from processed core photographs, and the count data were processed to capture the flood signal. Automatic quantification was compared with naked-eye counting. Counts were performed twice on the proximal and distal cores to provide an objective and reproducible record of flood frequency. Geophysical and geochemical analyses made it possible to distinguish event deposits from background sedimentation. Flood frequency and reconstructed sedimentary dynamics were compared with lake-level changes and pollen dynamics inferred from vegetation data. The data suggest a record marked by low flood frequency during the early and middle Holocene (10 000–4500 cal BP). Only modest increases during short intervals are recorded at ca. 8000, 7500, and 7100 cal BP. The last third of the Holocene is characterised by a shift toward increased flood frequency at ca. 4500–4000 cal BP. With the exception of two short intervals around 2900–2500 and 1800–1400 cal BP, which show a slightly reduced number of floods, the trend of increasing flood frequency prevailed until the 20th century, reaching a maximum between the 16th and the 19th centuries. Brief-flood frequency increases recorded during the early and middle Holocene can be attributed to cold climatic oscillations. On a centennial time scale, major changes in flood frequency, such as those observed at ca. 4500 and 500 cal BP, can be attributed to large-scale climatic changes such as the Neo-glacial and Little Ice Age, which are under orbital and possibly solar control. The role of climate as the main forcing factor in flood activity is supported by the lake-level records: the major lake-level rises are synchronous with flood frequency increases. However, in the Bronze Age and during the Middle Ages and modern times, forest clearing and land use are indicated by pollen and archaeological data. These human activities have clearly affected the sediment record of flood activity, and they can partially explain the amplitude of the increases in flood activity.


2020 ◽  
Vol 90 (12) ◽  
pp. 1804-1828
Author(s):  
Laura M. DeMott ◽  
Christopher A. Scholz

ABSTRACT Lacustrine carbonate tufa deposits are common in present-day lakes and dry pans of the western United States, and large-scale deposits (> 100 m high) are found throughout the subbasins of Pleistocene Lake Lahontan. This study presents a depositional model for very well exposed tufa in Winnemucca Dry Lake, a subbasin of Lake Lahontan, that incorporates new observations of tufa growth over length scales of 10–4–102 m. Tufa depositional facies are defined on the basis of outcrop morphology and texture. Deposits were mapped using satellite imagery and field observations. Tufa facies and volumes were quantified for seven tufa exposures across the basin using digital outcrop and elevation models from aerial images acquired from a small uncrewed aerial system (sUAS). Tufa thin sections were examined using transmitted-light petrography and scanning electron microscopy and combined with measurements of porosity and permeability to define small-scale facies characteristics. Both porosity and permeability are highly variable across textures; average values for both (ϕ = 29%, k = 5.5 D) indicate that all tufa types may exhibit excellent reservoir properties. The age and distribution of these facies across the basin are directly linked to hydroclimate and variations in lake level. The most important controls on tufa distribution at the basin scale are basin hydrology and pathways of groundwater inflow. Groundwater flow into the basin is largely concentrated along the western flexural margin along the contact between volcanic and volcaniclastic bedrock and alluvial sediments, rather than concentrated along the border fault margin, in contrast to other models which predict strong fault control of tufa occurrence. Microbially influenced tufa textures and morphologies are the most volumetrically significant tufas in the basin, composing between 77% and 100% of tufa volume at individual exposures; these are inferred to form during times when lake waters were warmer and levels higher, while physico-chemical processes dominate during early tufa formation, and generally in colder waters and under conditions of lower lake level. Deposition of tufas is a result of combined physical, chemical, and biological factors that are directly related to the basin geology and hydroclimate; however, the importance of each controlling factor is highly variable both spatially and temporally, complicating the development of effective and predictive depositional models. This case study describes tufa deposition intrinsically linked to basinal hydroclimatic histories, and understanding these relationships may assist in predicting volumes, physical properties, and stacking patterns of petroleum reservoir facies in lacustrine basins.


2019 ◽  
Author(s):  
Fabian Lindner ◽  
Fabian Walter ◽  
Gabi Laske ◽  
Florent Gimbert

Abstract. Hydraulic processes impact viscous and brittle ice deformation. Water-driven fracturing as well as turbulent water flow within and beneath glaciers radiate seismic waves which provide insights into otherwise hard-to-access englacial and subglacial environments. In this study, we analyze glaciohydraulic tremors recorded by four seismic arrays installed in different parts of Glacier de la Plaine Morte, Switzerland. Data were recorded during the 2016 melt season including the sudden subglacial drainage of an ice-marginal lake. Together with our seismic data, discharge, lake level, and ice flow measurements provide constraints on glacier hydraulics. We find that the tremors are generated by subglacial water flow, in moulins, and by icequake bursts. The dominating process can vary on sub-kilometer and sub-daily scales. Consistent with field observations, continuous source tracking via matched-field processing suggests a gradual upglacier progression of an efficient drainage system as the melt season progresses. The ice-marginal lake likely connects to this drainage system via hydrofracturing, which is indicated by sustained icequake signals emitted from the proximity of the lake basin and starting roughly 24 hours prior to the lake drainage. To estimate the hydraulics associated with the drainage, we use tremor-discharge scaling relationships. Our analysis suggests a pressurization of the subglacial environment at the drainage onset, followed by an increase in the hydraulic radii of the conduits and a subsequent decrease in the subglacial water pressure as the capacity of the drainage system increases. The pressurization is in phase with the drop in the lake level and its retrieved maximum coincides with ice-uplift measured via GPS. Our results highlight the use of cryo-seismology for monitoring glacier hydraulics.


2012 ◽  
Vol 43 (1-2) ◽  
pp. 113-122 ◽  
Author(s):  
Xiaoqin Zhang ◽  
Weimin Bao ◽  
Simin Qu ◽  
Zhongbo Yu

Tidal effect has a significant impact on flood routing in tidal rivers, conceptually taking on a resistant effect during flood tide and a dynamic effect during ebb tide. Two expressions were developed to reflect the tidal effect in this study, which consisted of the tidal wave velocity, the change rate of tidal level and the change in channel width. By incorporating the expressions into the momentum equation of the one-dimensional (1D) Saint-Venant equations, we propose that there are two types of momentum equations accounting for tidal effect. Based on the continuity equation and proposed momentum equations, two types of 1D hydrodynamic model for tidal rivers (namely the SVN-1 and -2 models) were constructed. In the case study, these models were applied to the tidal reach of the Qiantang River in China. The simulation results show that the SVN-1 and -2 models can obtain better accuracy than the SVN model based on the standard Saint-Venant equations, and that the SVN-1 model performs better than the SVN-2 model. Furthermore, the SVN-1 model can effectively capture water-level fluctuation, indicating that the expression employed is capable of accounting for tidal effect.


Water ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1122
Author(s):  
Monica Ionita ◽  
Viorica Nagavciuc

The role of the large-scale atmospheric circulation in producing heavy rainfall events and floods in the eastern part of Europe, with a special focus on the Siret and Prut catchment areas (Romania), is analyzed in this study. Moreover, a detailed analysis of the socio-economic impacts of the most extreme flood events (e.g., July 2008, June–July 2010, and June 2020) is given. Analysis of the largest flood events indicates that the flood peaks have been preceded up to 6 days in advance by intrusions of high Potential Vorticity (PV) anomalies toward the southeastern part of Europe, persistent cut-off lows over the analyzed region, and increased water vapor transport over the catchment areas of Siret and Prut Rivers. The vertically integrated water vapor transport prior to the flood peak exceeds 300 kg m−1 s−1, leading to heavy rainfall events. We also show that the implementation of the Flood Management Plan in Romania had positive results during the 2020 flood event compared with the other flood events, when the authorities took several precaution measurements that mitigated in a better way the socio-economic impact and risks of the flood event. The results presented in this study offer new insights regarding the importance of large-scale atmospheric circulation and water vapor transport as drivers of extreme flooding in the eastern part of Europe and could lead to a better flood forecast and flood risk management.


The Holocene ◽  
2021 ◽  
pp. 095968362110116
Author(s):  
Tanzhuo Liu ◽  
Christopher J Lepre ◽  
Sidney R Hemming ◽  
Wallace S Broecker

Rock varnish is a manganiferous dark coating accreted on subaerially exposed rocks in drylands. It often contains a layered microstratigraphy that records past wetness variations. Varnish samples from latest Pleistocene and Holocene geomorphic features in the Lake Turkana basin, East Africa display a regionally replicable microstratigraphy record of Holocene millennial-scale wetness variability and a broad interval of wetter conditions during the African Humid Period (AHP). Three major wet pulses in the varnish record occurred during the generally wet interval of the early Holocene (11.5–8.5 ka) when the lake attained its maximum high stand (MHS) at 455–460 m. A >23 m drop from the MHS occurred between 8.5 and 8 ka. Subsequently two additional wet pulses occurred during the early to middle Holocene (8–5 ka) when the lake occupied its secondary high stand at 445 m. Collectively, these five wet phases represent an extended wet interval coincident with the AHP in the region. One moderate wet phase occurred during the subsequent climatic transition from the humid to arid regime (5–4.3 ka) after the lake level dropped rapidly from 445 m to <405 m. Five minor wet phases took place during the overall arid period of the late Holocene (4.3–0 ka) when the lake level oscillated below 405 m. These findings indicate that the AHP terminated rapidly around 5 ka in the Turkana basin in terms of lake level drop, but the regional shift in relative humidity from the AHP mode to its present-day condition lagged for about 700 years until 4.3 ka, hinting at a gradual phasing out in terms of moisture condition. These findings further suggest that Lake Turkana overflowed intermittently into the Nile drainage system through its topographic sill at 455–460 m during the early Holocene and has become a closed-basin lake thereafter for the past 8 ky.


2021 ◽  
Vol 13 (15) ◽  
pp. 3023
Author(s):  
Jinghua Xiong ◽  
Shenglian Guo ◽  
Jiabo Yin ◽  
Lei Gu ◽  
Feng Xiong

Flooding is one of the most widespread and frequent weather-related hazards that has devastating impacts on the society and ecosystem. Monitoring flooding is a vital issue for water resources management, socioeconomic sustainable development, and maintaining life safety. By integrating multiple precipitation, evapotranspiration, and GRACE-Follow On (GRAFO) terrestrial water storage anomaly (TWSA) datasets, this study uses the water balance principle coupled with the CaMa-Flood hydrodynamic model to access the spatiotemporal discharge variations in the Yangtze River basin during the 2020 catastrophic flood. The results show that: (1) TWSA bias dominates the overall uncertainty in runoff at the basin scale, which is spatially governed by uncertainty in TWSA and precipitation; (2) spatially, a field significance at the 5% level is discovered for the correlations between GRAFO-based runoff and GLDAS results. The GRAFO-derived discharge series has a high correlation coefficient with either in situ observations and hydrological simulations for the Yangtze River basin, at the 0.01 significance level; (3) the GRAFO-derived discharge observes the flood peaks in July and August and the recession process in October 2020. Our developed approach provides an alternative way of monitoring large-scale extreme hydrological events with the latest GRAFO release and CaMa-Flood model.


2011 ◽  
Vol 26 (5) ◽  
pp. 1065-1087 ◽  
Author(s):  
Pierfranco Costabile ◽  
Francesco Macchione

Sign in / Sign up

Export Citation Format

Share Document