scholarly journals Correction: Xu, C., et al. Effects of Artificial LED Light on the Growth of Three Submerged Macrophyte Species during the Low-Growth Winter Season: Implications for Macrophyte Restoration in Small Eutrophic Lakes. Water 2019, 11, 1512

Water ◽  
2020 ◽  
Vol 12 (2) ◽  
pp. 539
Author(s):  
Chao Xu ◽  
Hai-Jun Wang ◽  
Qing Yu ◽  
Hong-Zhu Wang ◽  
Xiao-Min Liang ◽  
...  

The authors wish to make the following corrections to this paper [...]

Water ◽  
2019 ◽  
Vol 11 (7) ◽  
pp. 1512 ◽  
Author(s):  
Chao Xu ◽  
Hai-Jun Wang ◽  
Qing Yu ◽  
Hong-Zhu Wang ◽  
Xiao-Min Liang ◽  
...  

Eutrophication of lakes is becoming a global environmental problem, leading to, among other things, rapid reproduction of phytoplankton, increased turbidity, loss of submerged macrophytes, and the recovery of these plants following nutrient loading reduction is often delayed. Artificial light supplement could potentially be a useful method to help speeding up recovery. In this study, three common species of submerged macrophytes, Vallisneria natans, Myriophyllum spicatum and Ceratophyllum demersum, were exposed to three LED light treatments (blue, red and white) and shaded (control) for 100 days (from 10 November 2016 to 18 January 2017) in 12 tanks holding 800 L of water. All the three LED light treatments promoted growth of the three macrophyte species in terms of shoot number, length and dry mass. The three light treatments differed in their effects on the growth of the plants; generally, the red light had the strongest promoting effects, followed by blue and white. The differences in light effects may be caused by the different photosynthetic photon flux density (PPFD) of the lights, as indicated by an observed relationship of PPFD with the growth variables. The three species also responded differently to the light treatments, V. natans and C. demersum showing higher growth than M. spicatum. Our findings demonstrate that artificial light supplement in the low-growth winter season can promote growth and recovery of submerged macrophytes and hence potentially enhance their competitiveness against phytoplankton in the following spring. More studies, however, are needed to elucidate if LED light treatment is a potential restoration method in small lakes, when the growth of submerged macrophytes are delayed following a sufficiently large external nutrient loading reduction for a shift to a clear macrophyte state to have a potential to occur. Our results may also be of relevance when elucidating the role of artificial light from cities on the ecosystem functioning of lakes in urban areas.


Author(s):  
Jong-Yun Choi ◽  
Seong-Ki Kim ◽  
Kwang-Seuk Jeong ◽  
Gea-Jae Joo

AbstractMacrophytes determine the physical complexity of aquatic environments and provide a suitable habitat for colonization by microcrustaceans. We evaluated the effects of a seasonal growth pattern and structure of macrophyte species on epiphytic microcrustaceans collected from macrophyte surfaces (stems and leaves) in shallow wetlands from May 2011 to October 2012. In 2011, epiphytic microcrustaceans that preferred free-floating macrophytes (Spirodela polyrhiza and Salvinia natans) and submerged macrophytes (Potamogeton crispus and Ceratophyllum demersum) were affected by the seasonal growth of these species. Epiphytic microcrustaceans were abundant on the surface of Spirodela polyrhiza in June and August and on Salvinia natans in September and October. In 2012, epiphytic microcrustaceans preferred submerged macrophyte species over the free-floating ones. The results of stable isotope analysis showed that epiphytic microcrustaceans depend on epiphytic particulate organic matter (EPOM) from each macrophyte species rather than on suspended particulate organic matter. Small species (Coronatella rectangula, Pleuroxus laevis, and Chydorus sphaericus) used EPOM (dominated by epiphytic algae) on free-floating and submerged macrophyte species; however, relatively larger species (Ilyocryptus spinifer and Macrothrix rosea) used EPOM only from submerged macrophytes. Based on these findings, we conclude that the distribution of epiphytic microcrustaceans is determined by seasonal characteristics, morphology of macrophyte species, and abundance of food resources.


Author(s):  
Wojciech Ejankowski ◽  
Tomasz Lenard

<p>The physicochemical parameters of water, the concentration of chlorophyll-<em>a</em> and the submerged aquatic vegetation (SAV) were studied to evaluate the effects of different winter seasons on the biomass of macrophytes in shallow eutrophic lakes. We hypothesised that a lack of ice cover or early ice-out can influence the physicochemical parameters of water and thus change the conditions for the development of phytoplankton and SAV. The studies were conducted in four lakes of the Western Polesie region in mid-eastern Poland after mild winters with early ice-out (MW, 2011 and 2014) and after cold winters with late ice-out (CW, 2010, 2012 and 2013). The concentrations of soluble and total nitrogen, chlorophyll-<em>a</em> and the TN:TP ratio in the lakes were considerably higher, whereas the concentration of soluble and total phosphorus and water transparency were significantly lower after the MW compared with after the CW. No differences were found in water temperature, reaction and electrolytic conductivity. Low water turbidity linked with low concentration of chlorophyll-<em>a</em> after the CW resulted in increased water transparency and the total biomass of the SAV. The negative effect of the MW on the macrophyte species was stronger on more sensitive species (<em>Myriophyllum spicatum</em>,<em> Stratiotes aloides</em>) compared with shade tolerant <em>Ceratophyllum demersum</em>. Our findings show that the ice cover phenology affected by climate warming can change the balance between phytoplankton and benthic vegetation in shallow eutrophic lakes, acting as a shift between clear and turbid water states. We speculate that various responses of macrophyte species to changes in the water quality after two winter seasons (CW and MW) could cause alterations in the vegetation biomass, particularly the expansion of shade tolerance and the decline of light-demanding species after a series of mild winters.</p>


2020 ◽  
Vol 10 (4) ◽  
pp. 1330
Author(s):  
Vincent K. S. Hsiao ◽  
Teng-Yun Cheng ◽  
Chih-Feng Chen ◽  
Hao Shiu ◽  
Yong-Jin Yu ◽  
...  

We investigated a light emitting diode (LED) lighting system applied to a water bamboo field during winter season at night, and the results indicated that this lighting system can prevent the stunting of water bamboo leaves and further assist its growth. Compared with previous LED systems, in which the LED bulbs were placed directly above water bamboo leaves, our LED lighting system presents the benefit of easy handling during harvest. To prevent the inhomogeneous coverage of LED light patterns, a new design of LED lenses was also incorporated.


2017 ◽  
Vol 106 ◽  
pp. 578-587 ◽  
Author(s):  
Lei Zeng ◽  
Feng He ◽  
Zhigang Dai ◽  
Dong Xu ◽  
Biyun Liu ◽  
...  

2017 ◽  
Vol 36 (2) ◽  
pp. 376-384 ◽  
Author(s):  
Lei Zeng ◽  
Feng He ◽  
Yi Zhang ◽  
Biyun Liu ◽  
Zhigang Dai ◽  
...  

Hydrobiologia ◽  
2015 ◽  
Vol 778 (1) ◽  
pp. 179-192 ◽  
Author(s):  
Robyn L. Paice ◽  
Jane M. Chambers ◽  
Belinda J. Robson

Sign in / Sign up

Export Citation Format

Share Document