scholarly journals Nitrogen Removal for Liquid-Ammonia Mercerization Wastewater via Partial Nitritation/Anammox Based on Zeolite Sequencing Batch Reactor

Water ◽  
2020 ◽  
Vol 12 (8) ◽  
pp. 2234
Author(s):  
Lei Zheng ◽  
Yongxing Chen ◽  
Songwei Zhou ◽  
Yuchen Chen ◽  
Xingxing Wang ◽  
...  

Liquid-ammonia mercerization is commonly used to enhance the quality of cotton fabric in the textile industry, resulting in a large amount of liquid-ammonia mercerization wastewater (LMWW) containing high concentration of ammonia to be disposed of. This study proposes a partial nitritation/anammox (PN/A) process based on stable nitritation by a zeolite sequencing batch reactor (ZSBR) for the nitrogen removal of LMWW. The ZSBR could quickly achieve stably full nitritation with a nitrite accumulation ratio higher than 97% and an ammonia removal rate of 0.86 kg N·m−3·d−1 for the raw LMWW with an ammonia level of 1490 mg/L. In order to avoid anammox inhibition by free nitrous acid, the ZSBR was successfully changed to PN operation with diluted LMWW for effluent meeting anammox requirements. The next anammox reactor (an up-flow blanket filter (UBF)) realized a total nitrogen removal efficiency of 70.0% with a NLR (nitrogen loading rate) of 0.82 kg N·m−3·d−1 for LMWW. High-throughput sequencing analysis results indicated that Nitrosomonas and Candidatus Kuenenia were the dominant bacteria in ZSBR and UBF, respectively. All results revealed that the PN/A process based on ZSBR as the PN pretreatment process was feasible for LMWW, facilitating cost-effective and low-carbon nitrogen removal for LMWW treatment in the textile industry in the future.

2018 ◽  
Vol 44 ◽  
pp. 00179 ◽  
Author(s):  
Mariusz Tomaszewski ◽  
Grzegorz Cema ◽  
Tomasz Twardowski ◽  
Aleksandra Ziembińska-Buczyńska

The anaerobic ammonium oxidation (anammox) process is one of the most energy efficient and environmentally-friendly bioprocess for the treatment of the wastewater with high nitrogen concentration. The aim of this work was to study the influence of the high nitrogen loading rate (NLR) on the nitrogen removal in the laboratory-scale anammox sequencing batch reactor (SBR), during the shift from the synthetic wastewater to landfill leachate. In both cases with the increase of NLR from 0.5 to 1.1 – 1.2 kg N/m3d, the nitrogen removal rate (NRR) increases to about 1 kg N/m3d, but higher NLR caused substrates accumulation and affects anammox process efficiency. Maximum specific anammox activity was determined as 0.638 g N/g VSSd (NRR 1.023 kg N/m3d) and 0.594 g N/g VSSd (NRR 1.241 kg N/m3d) during synthetic and real wastewater treatment, respectively. Both values are similar and this is probably the nitrogen removal capacity of the used anammox biomass. This indicates, that landfill leachate did not influence the nitrogen removal capacity of the anammox process.


2009 ◽  
Vol 59 (12) ◽  
pp. 2371-2377 ◽  
Author(s):  
Q. Yang ◽  
X. H. Liu ◽  
Y. Z. Peng ◽  
S. Y. Wang ◽  
H. W. Sun ◽  
...  

To obtain economically sustainable wastewater treatment, advanced nitrogen removal from municipal wastewater and the feasibility of achieving and stabilizing short-cut nitrification and denitrification were investigated in a pilot-plant sequencing batch reactor (SBR) with a working volume of 54 m3. Advanced nitrogen removal, from summer to winter, with effluent TN lower than 3 mg/L and nitrogen removal efficiency above 98% was successfully achieved in pulsed-feed SBR. Through long-term application of process control in pulsed-feed SBR, nitrite accumulation reached above 95% at normal temperature of 25°C. Even in winter, at the lowest temperature of 13°C, nitrite was still the end production of nitrification and nitrite accumulation was higher than 90%. On the basis of achieving advanced nitrogen removal, short-cut nitrification and denitrification was also successfully achieved. Compare to the pulse-feed SBR with fixed time control, the dosage of carbon source and energy consumption in pulsed-feed SBR with process control were saved about 30% and 15% respectively. In pulsed-feed SBR with process control, nitrogen removal efficiency was greatly improved. Moreover, consumption of power and carbon source was further saved.


Author(s):  
Mehdi Hajsardar ◽  
Seyed Mehdi Borghei ◽  
Amir Hessam Hassani ◽  
Afshin Takdastan

Abstract A series of reactors including a sequencing batch reactor (SBR) and a sequencing batch biofilm reactor (SBBR) were used for nitrogen removal. The aim of this study was simultaneous removal of NH4+-N and NOx–-N from synthetic wastewater. In the novel proposed method, the effluent from SBR was sequentially introduced into SBBR, which contained 0.030 m3 biofilm carriers, so the system operated under a paired sequence of aerobic-anoxic conditions. The effects of different carbon sources and aeration conditions were investigated. A low dissolved oxygen (DO) level in the biofilm depth of the fixed-bed process (SBBR) simulated the anoxic phase conditions. Accordingly, a portion of NH4+-N that was not converted to NO3–-N by the SBR process was converted to NO3–-N in the outer layer of the biofilm in the SBBR process. Further, simultaneous nitrification and denitrification (SND) was achieved in the SBBR where NO2–-N was converted to N2 directly, before NO3–-N conversion (partial nitrification). The level of mixed liquid suspended solids (MLSS) was 2740 mg/l at the start of the experiments. The required carbon source (C: N ratio of 4) was provided by adding an internal carbon source (through step feeding) or ethanol. Firstly, as part of the system (SBR and SBBR), SBR operated at a DO level of 1 mg/l while SBBR operated at a DO concentration of 0.3 mg/l during Run-1. During Run-2, the system operated at the low DO concentration of 0.3 mg/l. When the source of carbon was ethanol, the nitrogen removal rate (RN) was higher than the operation with an internal carbon source. When the reactors were operated at the same DO concentration of 0.3 mg/l, 99.1 % of the ammonium was removed. The NO3–-N produced during the aerobic SBR operation of the novel method was removed in SBBR reactor by 8.3 %. The concentrations of NO3--N and NO2–-N in the SBBR effluent were reduced to 2.5 and 5.5 mg/l, respectively. Also, the total nitrogen (TN) removal efficiency was 97.5 % by adding ethanol at the DO level of 0.3 mg/l. When C:N adjustment was carried out SND efficiency at C:N ratio of 6.5 reached to 99 %. The increasing nitrogen loading rate (NLR) to 0.554 kg N/m3 d decreased SND efficiency to 80.7 %.


2016 ◽  
Vol 18 (3) ◽  
pp. 72-80 ◽  
Author(s):  
Mehdi Hajsardar ◽  
Seyed Mehdi Borghei ◽  
Amir Hessam Hassani ◽  
Afshin Takdastan

Abstract Optimized methods for simultaneous removal of nitrate, nitrite and ammonium are important features of nutrient removal. Nitrogen removal efficiency in an intermittently aerated sequencing batch reactor (IA-SBR) with multiple filling events was studied. No external carbon source was added and three filling events were considered. Oxidationreduction potential (ORP) and pH curve at solids retention time (SRT) of 20 d were analyzed. Effects of three organic loading rates (OLR), 0.67, 1.0 and 1.5 kgCOD/m3d, and three nitrogen loading rates (NLR), 0.054, 0.1 and 0.15 kgN/m3d, on nitrogen removal were studied. Nitrate Apex in pH curve and Nitrate Knee in ORP profile indicated that the end of denitrification would be achieved sooner. The kinetic coefficients of endogenous decay (kd) and yield (Y) were identified to evaluate heterotrophic specific denitrification rate (SDNRb). In period 2 at NLR of 0.054 kgN/m3d and considering 2 anoxic and 3 aerobic phases, nitrogen removal efficiency was 91.43%.


2004 ◽  
Vol 49 (5-6) ◽  
pp. 295-300 ◽  
Author(s):  
Y. Peng ◽  
X. Song ◽  
C. Peng ◽  
J. Li ◽  
Y. Chen

A novel control strategy for biological nitrogen removal with high nitrite built-up through chlorine dosage was studied. In the biological nitrogen removal process operated in a bench-scale sequencing batch reactor, dose of chlorine of 0.2 mg/l in the form of sodium hypochlorite was applied after the COD was depleted. The aerobic phase switched to an anoxic phase shortly after the ammonium was completely biotically oxidized. Nitrite accumulation was stably achieved which was attributed to the chlorination and the lag-time of nitrification. With the time control, stable 100% conversion of nitrite could also be sustained even under the absence of chlorine for at least 20 days. The nitrite oxidizer should have been killed rather than been suppressed in this study. For engineering applications, the advantages of the nitrification/denitrification via nitrite can compensate the cost of chlorine dosage. Combined with the aeration time control, it is feasible to apply chlorination in a biological nitrogen removal process in SBRs.


2011 ◽  
Vol 64 (7) ◽  
pp. 1479-1487 ◽  
Author(s):  
Ling-yun Li ◽  
Yong-zhen Peng ◽  
Shu-ying Wang ◽  
Lei Wu ◽  
Yong Ma ◽  
...  

The cultivation of nitritation granules in sequencing batch reactor (SBR) by seeding conventional floccular activated sludge was investigated using ethanol-based synthetic wastewater. Reducing settling time offers selection pressure for aerobic granulation, and stepwise increase of influent N/C ratio can help to selectively enrich ammonia oxidizing bacteria (AOB) in aerobic granules. The spherical shaped granules were observed with the mean diameter of 1.25 mm, average settling velocity of 1.9 cm s−1 and the sludge volume index (SVI) of 18.5–31.4 ml g−1. After 25 days of operation, the nitrogen loading rate reached 0.0455 kg NH4+-N (kg MLSS·d)−1, which was 4.55 times higher than that of the start-up period. The mature granules showed high nitrification ability. Ammonia removal efficiency was above 95% and nitrite accumulation ratio was in the range of 80–95%. The nitrifying bacteria were quantified by fluorescence in situ hybridization analysis, which indicated that AOB was 14.9 ± 0.5% of the total bacteria and nitrite oxidizing bacteria (NOB) was 0.89 ± 0.1% of the total bacteria. Therefore, AOB was the dominant nitrifying bacteria. It was concluded that the associated inhibition of free ammonia at the start of each cycle and free nitrous acid during the later phase of aeration may be the key factors to start up and maintain the stable nitritation.


2010 ◽  
Vol 61 (6) ◽  
pp. 1393-1400 ◽  
Author(s):  
Y. Jeanningros ◽  
S. E. Vlaeminck ◽  
A. Kaldate ◽  
W. Verstraete ◽  
L. Graveleau

Deammonification involves the combined application of aerobic and anoxic ammonium-oxidizing bacteria (AerAOB & AnAOB) and allows to treat wastewaters with a high ammonium concentration in a sustainable and cost-efficient way. So far, it could take more than one year to start up the process, even with the addition of AnAOB enriched inocula. In contrast, we started up a deammonifying reactor for the treatment of sludge digestate in less than four months without any AnAOB enriched inoculum. In a single sequencing batch reactor (SBR) of 3 m3, nitritation and anammox were performed without nitrite accumulation. Larger biomass aggregates (>1.0 mm) had a typical reddish colour, but FISH also showed that small aggregates (<0.25 mm) contained a considerable amount of AnAOB. The AerAOB were related to Nitrosomonas halophila, N. eutropha and N. halophila, and the AnAOB to “Candidatus Kuenenia & Brocadia”, as shown by FISH. Our results show that the deammonification inoculum does not play an important role, and that the AnAOB can quickly develop under the proper aerational conditions. Nitrogen was removed stably at high nitrogen loading rates (740 mg N/L/d) and removal efficiency (90%).


Sign in / Sign up

Export Citation Format

Share Document