The benefits of autotrophic nitrogen removal from high concentration of urea wastewater through a process of urea hydrolysis and partial nitritation in sequencing batch reactor

2021 ◽  
Vol 292 ◽  
pp. 112762
Author(s):  
Yongxing Chen ◽  
Haochuan Chen ◽  
Zhenguo Chen ◽  
Haolin Hu ◽  
Cuilan Deng ◽  
...  
2009 ◽  
Vol 100 (21) ◽  
pp. 5010-5015 ◽  
Author(s):  
Haydée De Clippeleir ◽  
Siegfried E. Vlaeminck ◽  
Marta Carballa ◽  
Willy Verstraete

2010 ◽  
Vol 62 (7) ◽  
pp. 1574-1579 ◽  
Author(s):  
M. Chen ◽  
S. He ◽  
Q. Yi ◽  
M. Yang

Leachate generated from landfill is becoming a great environmental challenge to China as it contains high concentration of COD, ammonium and some other substances. Nitrogen removal through the conventional nitrification-denitrification process is hampered by the low C/N ratio especially for the old age landfill sites and the high energy consumption for aeration. In this study, the combination of magnesium ammonium phosphate (MAP) precipitation and Sequencing batch reactor (SBR) was suggested as a new process for the treatment of high strength ammonium, and the effect of high concentration of Cl− after MAP precipitation because of the use of MgCl2 was investigated on SBR performance. The practical upper limit of Cl− for nitrification was found to be 12,000 mg/L, above which resulted in significant accumulation of ammonium in SBR system. It is suggested that an ammonium removal of 70% was suitable for the MAP treatment to achieve a balance between increasing the C/N ratio and avoiding detrimental effect from high concentration of Cl− in the succeeding SBR system. DGGE analysis indicated that high diversity of Ammonium oxidizing bacteria (AOB) could be maintained at a Cl− concentration of 12,000 mg/L.


Water ◽  
2020 ◽  
Vol 12 (8) ◽  
pp. 2234
Author(s):  
Lei Zheng ◽  
Yongxing Chen ◽  
Songwei Zhou ◽  
Yuchen Chen ◽  
Xingxing Wang ◽  
...  

Liquid-ammonia mercerization is commonly used to enhance the quality of cotton fabric in the textile industry, resulting in a large amount of liquid-ammonia mercerization wastewater (LMWW) containing high concentration of ammonia to be disposed of. This study proposes a partial nitritation/anammox (PN/A) process based on stable nitritation by a zeolite sequencing batch reactor (ZSBR) for the nitrogen removal of LMWW. The ZSBR could quickly achieve stably full nitritation with a nitrite accumulation ratio higher than 97% and an ammonia removal rate of 0.86 kg N·m−3·d−1 for the raw LMWW with an ammonia level of 1490 mg/L. In order to avoid anammox inhibition by free nitrous acid, the ZSBR was successfully changed to PN operation with diluted LMWW for effluent meeting anammox requirements. The next anammox reactor (an up-flow blanket filter (UBF)) realized a total nitrogen removal efficiency of 70.0% with a NLR (nitrogen loading rate) of 0.82 kg N·m−3·d−1 for LMWW. High-throughput sequencing analysis results indicated that Nitrosomonas and Candidatus Kuenenia were the dominant bacteria in ZSBR and UBF, respectively. All results revealed that the PN/A process based on ZSBR as the PN pretreatment process was feasible for LMWW, facilitating cost-effective and low-carbon nitrogen removal for LMWW treatment in the textile industry in the future.


2009 ◽  
Vol 59 (3) ◽  
pp. 573-582 ◽  
Author(s):  
Xiao-ming Li ◽  
Dong-bo Wang ◽  
Qi Yang ◽  
Wei Zheng ◽  
Jian-bin Cao ◽  
...  

It was occasionally found that a significant nitrogen loss in solution under neutral pH value in a sequencing batch reactor with a single-stage oxic process using synthetic wastewater, and then further studies were to verify the phenomenon of nitrogen loss and to investigate the pathway of nitrogen removal. The result showed that good performance of nitrogen removal was obtained in system. 0–7.28 mg L−1 ammonia, 0.08–0.38 mg L−1 nitrite and 0.94–2.12 mg L−1 nitrate were determined in effluent, respectively, when 29.85–35.65 mg L−1 ammonia was feeding as the sole nitrogen source in influent. Furthermore, a substantial nitrogen loss in solution (95% of nitrogen influent) coupled with a little gaseous nitrogen increase in off-gas (7% of nitrogen influent) was determined during a typical aerobic phase. In addition, about 322 mg nitrogen accumulation (84% of nitrogen influent) was detected in activated sludge. Based on nitrogen mass balance calculation, the unaccounted nitrogen fraction and the ratio of nitrogen accumulation in sludge/nitrogen loss in solution were 14.6 mg (3.7% of nitrogen influent) and 0.89, respectively. The facts indicated that the essential pathway of nitrogen loss in solution in this study was excess nitrogen accumulation in activated sludge.


Sign in / Sign up

Export Citation Format

Share Document