scholarly journals Hydrogeochemical Variability of the Acidic Springs in the Rio Tinto Headwaters

Water ◽  
2021 ◽  
Vol 13 (20) ◽  
pp. 2861
Author(s):  
Christopher John Allman ◽  
David Gómez-Ortiz ◽  
Andrea Burke ◽  
Ricardo Amils ◽  
Nuria Rodriguez ◽  
...  

Peña de Hierro, located in southwest Spain, encompasses the springs and headwaters for the Rio Tinto River that emerge above normal faults and has been mined for its rich sulfide ore since 2500 BC. The springs are typically characterized by an orange coloration, typical pH of ~2.33, and contain elevated concentrations of heavy metals that are produced by acid rock drainage (ARD). ARD is a natural phenomenon that results from chemolithoautotrophs metabolizing the sulfide ore. Mining has amplified the magnitude of the acidity and concentrations of heavy metals evidenced within sedimentary cores from the Huelva estuary. Acidity, redox state, hydrochemistry and isotopic analyses were examined for the purpose of characterizing the subsurface flows and determining the interconnectivity of the groundwaters. Previous studies have documented the geochemistry of the springs, dating a select few, yet many springs remain uncharacterized. Acidity presented spatial variability throughout the field area, caused by extensive sulfide interactions which generated and modified the pH. Redox exhibited a large range of values due to oxygen diffusivity though the fracture network. The surrounding geology is highly heterogeneous because of intensive deformation during the Variscan and Tertiary periods, and this heterogeneity is shown in the varied aqueous chemistry. Fractionation patterns observed in δ2H and δ18O values predominantly reflected enrichment by intensive evaporation and depletion in δ18O as a result of the proposed sulfatic-water model for Rio Tinto’s hydrogeology. The analysis illustrates minimal hydrologic interconnectivity, evidenced by the extensive physical and chemical contrasts within such a small proximity.

2020 ◽  
Vol 718 ◽  
pp. 137294 ◽  
Author(s):  
Sergey M. Abramov ◽  
Julian Tejada ◽  
Lars Grimm ◽  
Franziska Schädler ◽  
Aleksandr Bulaev ◽  
...  
Keyword(s):  

2009 ◽  
Vol 71-73 ◽  
pp. 13-19 ◽  
Author(s):  
R. Amils ◽  
E. González-Toril ◽  
A. Aguilera ◽  
Nuria Rodríguez ◽  
D. Fernández-Remolar ◽  
...  

Rio Tinto (Iberian Pyritic Belt, SW Spain) is a natural extreme acidic environment with a rather constant acidic pH (mean pH value 2.3) and a high concentration of heavy metals. The Tinto ecosystem is under the control of iron. The geomicrobiological characterization of Río Tinto has unravelled some basic questions of biohydrometallurgical interest. The methodologies developed for this study were applied successfully to monitor different bioleaching processes of the BioMinE project.


2010 ◽  
Vol 25 ◽  
pp. 233-240 ◽  
Author(s):  
Angelica NAKA ◽  
Zhenze LI ◽  
Toru INUI ◽  
Takeshi KATSUMI ◽  
Hiroki MOGAMI

Author(s):  
Sergey M. Abramov ◽  
Daniel Straub ◽  
Julian Tejada ◽  
Lars Grimm ◽  
Franziska Schädler ◽  
...  

In the mining-impacted Rio Tinto, Spain, Fe-cycling microorganisms influence the transport of heavy metals (HMs) into the Atlantic Ocean. However, it remains largely unknown how spatial and temporal hydrogeochemical gradients along the Rio Tinto shape the composition of Fe-cycling microbial communities and how this in turn affects HM mobility. Using a combination of DNA- and RNA-based 16S rRNA (gene) amplicon sequencing and hydrogeochemical analyses, we explored the impact of pH, Fe(III), Fe(II) and Cl - on Fe-cycling microorganisms. We showed that the water column at the acidic (pH 2.2) middle course of the river was colonized by Fe(II) oxidizers affiliating with Acidithiobacillus and Leptospirillum. At the upper estuary, daily fluctuations of pH (2.7-3.7) and Cl - (6.9-16.6 g/L) contributed to the establishment of a unique microbial community, including Fe(II) oxidizers belonging to Acidihalobacter , Marinobacter and Mariprofundus identified at this site. Furthermore, DNA- and RNA-based profiles of the benthic community suggested that acidophilic and neutrophilic Fe(II) oxidizers (e.g., Acidihalobacter , Marinobacter and Mariprofundus ), Fe(III) reducers (e.g., Thermoanaerobaculum ) and sulfate-reducing bacteria drive the Fe cycle in the estuarine sediments. RNA-based relative abundances of Leptospirillum at the middle course as well as abundances of Acidohalobacter and Mariprofundus at the upper estuary were higher, compared to DNA-based results, suggesting potentially higher level of activity of these taxa. Based on our findings, we propose a model of how tidal water affects the composition and activity of the Fe-cycling taxa, playing an important role in the transport of HMs (e.g., As, Cd, Cr and Pb) along the Rio Tinto. Importance The estuary of the Rio Tinto is a unique environment in which extremely acidic, heavy metal- and especially iron-rich river water is mixed with seawater. Due to the mixing events, the estuarine water is characterized by a low pH, almost sea water salinity and high concentrations of bioavailable iron. The unusual hydrogeochemistry maintains unique microbial communities in the estuarine water and in the sediment. These communities include halotolerant iron-oxidizing microorganisms which typically inhabit acidic saline environments and marine iron-oxidizing microorganisms, which, in opposite, are not typically found in acidic environments. Furthermore, highly saline estuarine water favored the prosperity of acidophilic heterotrophs, typically inhabiting brackish and saline environments. The Rio Tinto estuarine sediment harbored a diverse microbial community with both, acidophilic and neutrophilic members that can mediate the iron cycle, and in turn, can directly impact the mobility and transport of heavy metals in the Rio Tinto estuary.


2017 ◽  
Vol 16 (9) ◽  
pp. 2089-2096
Author(s):  
Artwell Kanda ◽  
George Nyamadzawo ◽  
Jephita Gotosa ◽  
Nathan Nyamutora ◽  
Willis Gwenzi

Alloy Digest ◽  
2020 ◽  
Vol 69 (4) ◽  

Abstract Rio Tinto Alloy 242.2 is a heat-treatable, aluminum-copper-magnesium-nickel casting alloy. It is available in the form of ingots to be remelted for the manufacture of sand and permanent mold castings. Alloy 242.0 is used extensively for applications requiring high strength and hardness at elevated temperatures. This datasheet provides information on composition, physical properties, elasticity, tensile properties, and shear strength as well as fatigue. It also includes information on corrosion resistance as well as casting, machining, and joining. Filing Code: Al-463. Producer or source: Rio Tinto Limited.


Sign in / Sign up

Export Citation Format

Share Document