scholarly journals Discharge and Temperature Controls of Dissolved Organic Matter (DOM) in a Forested Coastal Plain Stream

Water ◽  
2021 ◽  
Vol 13 (20) ◽  
pp. 2919
Author(s):  
Yuehan Lu ◽  
Peng Shang ◽  
Shuo Chen ◽  
Yingxun Du ◽  
Marco Bonizzoni ◽  
...  

Streams in the southeastern United States Coastal Plains serve as an essential source of energy and nutrients for important estuarine ecosystems, and dissolved organic matter (DOM) exported from these streams can have profound impacts on the biogeochemical and ecological functions of fluvial networks. Here, we examined hydrological and temperature controls of DOM during low-flow periods from a forested stream located within the Coastal Plain physiographic region of Alabama, USA. We analyzed DOM via combining dissolved organic carbon (DOC) analysis, fluorescence excitation–emission matrix combined with parallel factor analysis (EEM-PARAFAC), and microbial degradation experiments. Four fluorescence components were identified: terrestrial humic-like DOM, microbial humic-like DOM, tyrosine-like DOM, and tryptophan-like DOM. Humic-like DOM accounted for ~70% of total fluorescence, and biodegradation experiments showed that it was less bioreactive than protein-like DOM that accounted for ~30% of total fluorescence. This observation indicates fluorescent DOM (FDOM) was controlled primarily by soil inputs and not substantially influenced by instream production and processing, suggesting that the bulk of FDOM in these streams is transported to downstream environments with limited in situ modification. Linear regression and redundancy analysis models identified that the seasonal variations in DOM were dictated primarily by hydrology and temperature. Overall, high discharge and shallow flow paths led to the enrichment of less-degraded DOM with higher percentages of microbial humic-like and tyrosine-like compounds, whereas high temperatures favored the accumulation of high-aromaticity, high-molecular-weight, terrestrial, humic-like compounds in stream water. The flux of DOC and four fluorescence components was driven primarily by water discharge. Thus, the instantaneous exports of both refractory humic-like DOM and reactive protein-like DOM were higher in wetter seasons (winter and spring). As high temperatures and severe precipitation are projected to become more prominent in the southeastern U.S. due to climate change, our findings have important implications for future changes in the amount, source, and composition of DOM in Coastal Plain streams and the associated impacts on downstream carbon and nutrient supplies and water quality.

2016 ◽  
Author(s):  
Lisa Thieme ◽  
Daniel Graeber ◽  
Martin Kaupenjohann ◽  
Jan Siemens

Abstract. Freezing can affect concentrations and spectroscopic properties of dissolved organic matter (DOM) in water samples. Nevertheless, water samples are regularly frozen for sample preservation. In this study we tested the effect of different freezing methods (standard freezing at −18 °C and fast-freezing with liquid nitrogen) on DOM concentrations measured as organic carbon (DOC) concentrations and on spectroscopic properties of DOM from different terrestrial ecosystems (forest and grassland). Fresh and differently frozen throughfall, stemflow and soil solution samples were analyzed for DOC concentrations, UV-vis absorption and fluorescence excitation-emission matrices combined with parallel factor analysis (PARAFAC). Fast-freezing with liquid nitrogen prevented a significant decrease of DOC concentrations observed after freezing at −18 °C. Nonetheless, the share of PARAFAC components 1 (EXmax < 250 nm (340 nm), EMmax: 480 nm) and 2 (EXmax: 335 nm, EMmax: 408 nm) to total fluorescence and the humification index (HIX) decreased after both freezing treatments, while the shares of component 3 (EXmax: < 250 nm (305 nm), EMmax: 438 nm) as well as SUVA254 increased. The contribution of PARAFAC component 4 (EXmax: 280 nm, EMmax: 328 nm) to total fluorescence was not affected by freezing. We recommend fast-freezing with liquid nitrogen for preservation of bulk DOC concentrations of samples from terrestrial sources, whereas immediate measuring is preferable to preserve spectroscopic properties of DOM.


2016 ◽  
Vol 13 (16) ◽  
pp. 4697-4705 ◽  
Author(s):  
Lisa Thieme ◽  
Daniel Graeber ◽  
Martin Kaupenjohann ◽  
Jan Siemens

Abstract. Freezing can affect concentrations and spectroscopic properties of dissolved organic matter (DOM) in water samples. Nevertheless, water samples are regularly frozen for sample preservation. In this study we tested the effect of different freezing methods (standard freezing at −18 °C and fast-freezing with liquid nitrogen) on DOM concentrations measured as organic carbon (DOC) concentrations and on spectroscopic properties of DOM from different terrestrial ecosystems (forest and grassland). Fresh and differently frozen throughfall, stemflow, litter leachate and soil solution samples were analyzed for DOC concentrations, UV-vis absorption and fluorescence excitation–emission matrices combined with parallel factor analysis (PARAFAC). Fast-freezing with liquid nitrogen prevented a significant decrease of DOC concentrations observed after freezing at −18 °C. Nonetheless, the share of PARAFAC components 1 (EXmax < 250 nm (340 nm), EXmax: 480 nm) and 2 (EXmax: 335 nm, EXmax: 408 nm) to total fluorescence and the humification index (HIX) decreased after both freezing treatments, while the shares of component 3 (EXmax: < 250 nm (305 nm), EXmax: 438 nm) as well as SUVA254 increased. The contribution of PARAFAC component 4 (EXmax: 280 nm, EXmax: 328 nm) to total fluorescence was not affected by freezing. We recommend fast-freezing with liquid nitrogen for preservation of bulk DOC concentrations of samples from terrestrial sources, whereas immediate measuring is preferable to preserve spectroscopic properties of DOM.


2016 ◽  
Vol 13 (9) ◽  
pp. 2727-2741 ◽  
Author(s):  
Thibault Lambert ◽  
Cristian R. Teodoru ◽  
Frank C. Nyoni ◽  
Steven Bouillon ◽  
François Darchambeau ◽  
...  

Abstract. Large rivers transport considerable amounts of terrestrial dissolved organic matter (DOM) to the ocean. However, downstream gradients and temporal variability in DOM fluxes and characteristics are poorly studied at the scale of large river basins, especially in tropical areas. Here, we report longitudinal patterns in DOM content and composition based on absorbance and fluorescence measurements along the Zambezi River and its main tributary, the Kafue River, during two hydrological seasons. During high-flow periods, a greater proportion of aromatic and humic DOM was mobilized along rivers due to the hydrological connectivity with wetlands, while low-flow periods were characterized by lower DOM content of less aromaticity resulting from loss of connectivity with wetlands, more efficient degradation of terrestrial DOM and enhanced autochthonous productivity. Changes in water residence time due to contrasting water discharge were found to modulate the fate of DOM along the river continuum. Thus, high water discharge promotes the transport of terrestrial DOM downstream relative to its degradation, while low water discharge enhances the degradation of DOM during its transport. The longitudinal evolution of DOM was also strongly impacted by a hydrological buffering effect in large reservoirs in which the seasonal variability of DOM fluxes and composition was strongly reduced.


2016 ◽  
Author(s):  
Thibault Lambert ◽  
Cristian R. Teodoru ◽  
Frank C. Nyoni ◽  
Steven Bouillon ◽  
François Darchambeau ◽  
...  

Abstract. Large rivers transport considerable amounts of terrestrial dissolved organic matter (DOM) to the ocean. Yet, downstream gradients and temporal variability in DOM fluxes and characteristics are poorly studied at the scale of large river basins, especially in tropical areas. Here, we report longitudinal patterns in DOM content and composition based on absorbanc e and fluorescence measurements along the Zambezi River and its main tributary, the Kafue River, during two hydrological seasons. During high flow periods, a greater proportion of aromatic and humic DOM was mobilized along rivers due to the hydrological connectivity with wetlands and high flow velocities, while low flow periods were characterized by lower DOM content of less aromaticity resulting from loss of connectivity with wetlands, more efficient degradation of terrestrial DOM and enhanced autochthonous productivity. Changes in water residence time due to contrasting water discharge were found to modulate the fate of DOM along the river continuum. Thus, terrestrial DOM dynamics shifted from transport-dominated during the wet seasons towards degradation during the dry season, with substantial consequences on longitudinal DOM content and composition. The longitudinal evolution of DOM was also strongly impacted by a hydrological buffering effect in large reservoirs in which the seasonal variability of DOM fluxes and composition was strongly reduced.


Water ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 494
Author(s):  
Zenglei Han ◽  
Min Xiao ◽  
Fujun Yue ◽  
Yuanbi Yi ◽  
K. M. G. Mostofa

Fluorescence (excitation-emission matrices, EEMs) spectroscopy coupled with PARAFAC (parallel factor) modelling and UV-Vis (ultraviolet visible) spectra were used to ascertain the sources, distribution and biogeochemical transformation of dissolved organic matter (DOM) in the Duliujian River catchment. Dissolved organic carbon (DOC), chromophoric dissolved organic matter (a335) (CDOM), and hydrophobic components (a260) were higher in summer than in other seasons with 53.3 m−1, while aromaticity (SUVA254) was higher in spring. Four fluorescent components, namely terrestrial humic acid (HA)-like (A/C), terrestrial fulvic acid (FA)-like (A/M), autochthonous fulvic acid (FA)-like (A/M), and protein-like substances (Tuv/T), were identified using EEM-PARAFAC modelling in this river catchment. The results demonstrated that terrestrial HA-like substances enhance its contents in summer ARE compared with BRE, whilst terrestrial FA-like substances were newly input in summer ARE, which was entirely absent upstream and downstream, suggesting that rain events could significantly input the terrestrial soil-derived DOM in the ambient downward catchments. Autochthonous FA-like substances in summer BRE could derive from phytoplankton in the downstream waters. The results also showed that DOM from wetland exhibited lower fluorescent intensity of humic-like peak A/C and fulvic-like peak A/M, molecular weight (SR) and humification index (HIX) during the low-flow season. Built-up land, cropland, and unused land displayed higher a335 (CDOM). A higher proportion of forest and industrial land in the SCs showed higher SUVA254 values. Humic-like moiety, molecular weight and aromaticity were more responsive to land use during stormflow in summer. Rainfall could increase the export of soil DOM from cropland and unused land, which influences the spatial variation of HIX. The results in this study highlighted that terrestrial DOM has a significant influence on the biogeochemical alterations of DOM compositions and thus water quality in the downward watershed catchments, which might significantly vary according to the land-use types and their alterations by human activities.


2010 ◽  
Vol 41 (11) ◽  
pp. 1177-1188 ◽  
Author(s):  
Jennifer J. Mosher ◽  
Geoffrey C. Klein ◽  
Alan G. Marshall ◽  
Robert H. Findlay

Sign in / Sign up

Export Citation Format

Share Document