scholarly journals Durability and mode-I fracture of fiber-reinforced plastic (FRP)/wood interface bond

1999 ◽  
Author(s):  
Brent Stephen Trimble
2004 ◽  
Vol 126 (1) ◽  
pp. 1-7 ◽  
Author(s):  
Sanjeev K. Khanna ◽  
Marius D. Ellingsen ◽  
Robb M. Winter

Fiber-reinforced plastic composite materials are being widely used in a variety of load bearing and high-performance structures. Reliable use and optimum design requires accurate methods for predicting their fracture behavior, among other things. Fiber reinforced plastic composites are generally opaque and hence experimental fracture mechanics studies utilize surface measurements or post-fracture analysis. Hence quality transparent glass cloth reinforced polyester composites have been fabricated and transmission photoelasticity used to investigate quasi-static Mode-I fracture. The isochromatic fringe patterns obtained were analyzed using orthotropic photoelasticity to determine Mode-I stress intensity factors. Opening mode stress field equations in conjunction with an orthotropic stress-optic law were utilized to regenerate the isochromatic fringe patterns. Good agreement was found between the regenerated fringe patterns and the experimentally obtained patterns


Materials ◽  
2021 ◽  
Vol 14 (3) ◽  
pp. 576
Author(s):  
Liang Luo ◽  
Jie Lai ◽  
Jun Shi ◽  
Guorui Sun ◽  
Jie Huang ◽  
...  

This paper investigates the working performance of reinforcement concrete (RC) beams strengthened by Carbon-Fiber-Reinforced Plastic (CFRP) with different anchoring under bending moment, based on the structural stressing state theory. The measured strain values of concrete and Carbon-Fiber-Reinforced Plastic (CFRP) sheet are modeled as generalized strain energy density (GSED), to characterize the RC beams’ stressing state. Then the Mann–Kendall (M–K) criterion is applied to distinguish the characteristic loads of structural stressing state from the curve, updating the definition of structural failure load. In addition, for tested specimens with middle anchorage and end anchorage, the torsion applied on the anchoring device and the deformation width of anchoring device are respectively set parameters to analyze their effects on the reinforcement performance of CFRP sheet through comparing the strain distribution pattern of CFRP. Finally, in order to further explore the strain distribution of the cross-section and analyze the stressing-state characteristics of the RC beam, the numerical shape function (NSF) method is proposed to reasonably expand the limited strain data. The research results provide a new angle of view to conduct structural analysis and a reference to the improvement of reinforcement effect of CFRP.


Materials ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 2047
Author(s):  
Ji-Heon Kang ◽  
Jae-Wook Lee ◽  
Jae-Hong Kim ◽  
Tae-Min Ahn ◽  
Dae-Cheol Ko

Recently, with the increase in awareness about a clean environment worldwide, fuel efficiency standards are being strengthened in accordance with exhaust gas regulations. In the automotive industry, various studies are ongoing on vehicle body weight reduction to improve fuel efficiency. This study aims to reduce vehicle weight by replacing the existing steel reinforcements in an automobile center pillar with a composite reinforcement. Composite materials are suitable for weight reduction because of their higher specific strength and stiffness compared to existing steel materials; however, one of the disadvantages is their high material cost. Therefore, a hybrid molding method that simultaneously performs compression and injection was proposed to reduce both process time and production cost. To replace existing steel reinforcements with composite materials, various reinforcement shapes were designed using a carbon fiber-reinforced plastic patch and glass fiber-reinforced plastic ribs. Structural analyses confirmed that, using these composite reinforcements, the same or a higher specific stiffness was achieved compared to the that of an existing center pillar using steel reinforcements. The composite reinforcements resulted in a 67.37% weight reduction compared to the steel reinforcements. In addition, a hybrid mold was designed and manufactured to implement the hybrid process.


Sign in / Sign up

Export Citation Format

Share Document