scholarly journals Design of Center Pillar with Composite Reinforcements Using Hybrid Molding Method

Materials ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 2047
Author(s):  
Ji-Heon Kang ◽  
Jae-Wook Lee ◽  
Jae-Hong Kim ◽  
Tae-Min Ahn ◽  
Dae-Cheol Ko

Recently, with the increase in awareness about a clean environment worldwide, fuel efficiency standards are being strengthened in accordance with exhaust gas regulations. In the automotive industry, various studies are ongoing on vehicle body weight reduction to improve fuel efficiency. This study aims to reduce vehicle weight by replacing the existing steel reinforcements in an automobile center pillar with a composite reinforcement. Composite materials are suitable for weight reduction because of their higher specific strength and stiffness compared to existing steel materials; however, one of the disadvantages is their high material cost. Therefore, a hybrid molding method that simultaneously performs compression and injection was proposed to reduce both process time and production cost. To replace existing steel reinforcements with composite materials, various reinforcement shapes were designed using a carbon fiber-reinforced plastic patch and glass fiber-reinforced plastic ribs. Structural analyses confirmed that, using these composite reinforcements, the same or a higher specific stiffness was achieved compared to the that of an existing center pillar using steel reinforcements. The composite reinforcements resulted in a 67.37% weight reduction compared to the steel reinforcements. In addition, a hybrid mold was designed and manufactured to implement the hybrid process.

2021 ◽  
pp. 67-75
Author(s):  
M.A. Venediktova ◽  
◽  
A.A. Evdokimov ◽  
L.L. Krasnov ◽  
A.P. Petrova ◽  
...  

Possibility of increase of fire safety of VPS-58 glass fibre plastics and carbon fiber-reinforced plastic the VKU-51 brands by putting fireproof swelling-up fireproof paste of the VZO-9kh brand is investigated. Complex researches of physicomechanical, fire and heatphysical properties of fireproof paste of the VZO-9kh brand are conducted. By results of researches it is established that fireproof paste of the VZO-9kh brand corresponds to qualifying standards and can be applied to increase of fire safety of designs from polymeric composite materials.


2013 ◽  
Vol 750 ◽  
pp. 142-146 ◽  
Author(s):  
Atsushi Hosoi ◽  
Yuhei Yamaguchi ◽  
Yang Ju ◽  
Yasumoto Sato ◽  
Tsunaji Kitayama

A technique to detect delamination in composite materials by noncontact, rapid and high sensitive microwave reflectometry with a focusing mirror sensor was proposed. The focusing mirror sensor, which has high sensitivity and resolution, is expected to detect delamination sensitively. In this paper, the ability of microwave inspection to detect delamination in glass fiber reinforced plastic (GFRP) and carbon fiber reinforced plastic (CFRP) was verified. As the results, the existences of 100 μm thick delamination in 3 mm thick GFRP laminate and 2 mm thick CFRP laminate were detected.


2021 ◽  
Vol 9 (7) ◽  
pp. 726
Author(s):  
Dong-Uk Kim ◽  
Hyoung-Seock Seo ◽  
Ho-Yun Jang

With the gradual application of composite materials to ships and offshore structures, the structural strength of composites that can replace steel should be explored. In this study, the mechanical bearing strength and failure modes of a composite-to-metal joining structure connected by mechanically fastened joints were experimentally analyzed. The effects of the fiber tensile strength and stress concentration on the static bearing strength and failure modes of the composite structures were investigated. For the experiment, quasi-isotropic [45°/0°/–45°/90°]2S carbon fiber-reinforced plastic (CFRP) and glass fiber-reinforced plastic (GFRP) specimens were prepared with hole diameters of 5, 6, 8, and 10 mm. The experimental results showed that the average static bearing strength of the CFRP specimen was 30% or higher than that of the GFRP specimen. In terms of the failure mode of the mechanically fastened joint, a cleavage failure mode was observed in the GFRP specimen for hole diameters of 5 mm and 6 mm, whereas a net-tension failure mode was observed for hole diameters of 8 mm and 10 mm. Bearing failure occurred in the CFRP specimens.


Author(s):  
Mykhailo Bohatyr ◽  
Gennadiy Lvov ◽  
Oleksii Vodka ◽  
Oleksandr Oleksandrovych Chepeliuk

The use of composite materials in various branches of modern industry is rapidly increasing due to their high strength properties, low weight and good manufacturability. A wide variety of materials used, types of reinforcement and internal structures creates a need for studies of the static and dynamic properties of composite materials. Due to the latest advances in technology, composite materials are widely used in a variety of industrial applications. As a result, there is considerable interest in studying and understanding the behavior of composite structures. Analysis of composite structures, study of resonance frequencies, damping factors and modal shapes played an important role in determining the dynamic characteristics of the structure, detecting damage and monitoring the state of the composite structure. In this paper, the results of computational and experimental researches of the Young’s modulus, natural frequencies and modes of vibration, damping properties of the composite material are presented. The researches were carried out on samples of the woven ten-layer carbon fiber reinforced plastic. The investigated carbon fiber reinforced plastic has a plain weave. Samples were cut in three directions: warp (0 °), weft (90 °) and 45 °. Nine samples were prepared for each direction. To study the Young’s modulus, a tensile testing machine was used, and a vibration stand was used to determine the natural frequencies and modes of vibration. Damping properties are calculated by the Oberst method, based on the amplitude-frequency characteristics of the samples. Statistical processing of the experimental results was carried out and the values ​​of the mathematical expectation and variance were obtained. Geometric and finite element models of сarbon fiber reinforced plastic samples were built, their natural frequencies and vibration modes were determined. Comparison of the computational and experimental data with numerous calculations using the finite element method is carried out.


Sign in / Sign up

Export Citation Format

Share Document